基于广义霍夫变换和神经网络的探地雷达地下圆柱形目标定位与参数反演

Wei Li, Huilin Zhou, X. Wan
{"title":"基于广义霍夫变换和神经网络的探地雷达地下圆柱形目标定位与参数反演","authors":"Wei Li, Huilin Zhou, X. Wan","doi":"10.1109/ICGPR.2012.6254874","DOIUrl":null,"url":null,"abstract":"Targets location and parameter inversion are always active research field of Ground Penetrating Radar (GPR) and useful to address some challenges in civil and military applications. Since the amplitude and delay of receiving signal could correspondingly change due to varying of the dimension, and material of targets, permittivity of background. So, in this paper, we present a new framework integrated Generalized Hough Transform (GHT) with neural network to reconstruct their non-linear relationship and implement targets location and parameter inversion. The results based on simulated data demonstrate the high accuracy.","PeriodicalId":443640,"journal":{"name":"2012 14th International Conference on Ground Penetrating Radar (GPR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Generalized Hough Transform and ANN for subsurface cylindrical object location and parameters inversion from GPR data\",\"authors\":\"Wei Li, Huilin Zhou, X. Wan\",\"doi\":\"10.1109/ICGPR.2012.6254874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targets location and parameter inversion are always active research field of Ground Penetrating Radar (GPR) and useful to address some challenges in civil and military applications. Since the amplitude and delay of receiving signal could correspondingly change due to varying of the dimension, and material of targets, permittivity of background. So, in this paper, we present a new framework integrated Generalized Hough Transform (GHT) with neural network to reconstruct their non-linear relationship and implement targets location and parameter inversion. The results based on simulated data demonstrate the high accuracy.\",\"PeriodicalId\":443640,\"journal\":{\"name\":\"2012 14th International Conference on Ground Penetrating Radar (GPR)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 14th International Conference on Ground Penetrating Radar (GPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2012.6254874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2012.6254874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

目标定位和参数反演一直是探地雷达的研究热点,有助于解决民用和军事应用中的一些难题。由于目标的尺寸、材料、背景介电常数的变化,接收信号的幅度和延时也会相应发生变化。为此,本文提出了一种将广义霍夫变换(GHT)与神经网络相结合的框架,重构二者的非线性关系,实现目标定位和参数反演。仿真结果表明,该方法具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Hough Transform and ANN for subsurface cylindrical object location and parameters inversion from GPR data
Targets location and parameter inversion are always active research field of Ground Penetrating Radar (GPR) and useful to address some challenges in civil and military applications. Since the amplitude and delay of receiving signal could correspondingly change due to varying of the dimension, and material of targets, permittivity of background. So, in this paper, we present a new framework integrated Generalized Hough Transform (GHT) with neural network to reconstruct their non-linear relationship and implement targets location and parameter inversion. The results based on simulated data demonstrate the high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信