稀疏信号分割中凸优化的局限性

P. Rajmic, Michaela Novosadová
{"title":"稀疏信号分割中凸优化的局限性","authors":"P. Rajmic, Michaela Novosadová","doi":"10.1109/TSP.2016.7760941","DOIUrl":null,"url":null,"abstract":"We show that convex optimization methods have fundamental properties that complicate performing signal segmentation based on sparsity assumptions. We review the recently introduced overcomplete sparse segmentation model, we perform experiments revealing the limits, and we explain this behaviour. We also propose modifications and alternatives.","PeriodicalId":159773,"journal":{"name":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the limitation of convex optimization for sparse signal segmentation\",\"authors\":\"P. Rajmic, Michaela Novosadová\",\"doi\":\"10.1109/TSP.2016.7760941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that convex optimization methods have fundamental properties that complicate performing signal segmentation based on sparsity assumptions. We review the recently introduced overcomplete sparse segmentation model, we perform experiments revealing the limits, and we explain this behaviour. We also propose modifications and alternatives.\",\"PeriodicalId\":159773,\"journal\":{\"name\":\"2016 39th International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 39th International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP.2016.7760941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2016.7760941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们表明,凸优化方法具有使基于稀疏性假设的信号分割变得复杂的基本特性。我们回顾了最近引入的过完全稀疏分割模型,我们进行了揭示限制的实验,并解释了这种行为。我们也提出修改和替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the limitation of convex optimization for sparse signal segmentation
We show that convex optimization methods have fundamental properties that complicate performing signal segmentation based on sparsity assumptions. We review the recently introduced overcomplete sparse segmentation model, we perform experiments revealing the limits, and we explain this behaviour. We also propose modifications and alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信