利用蚁群聚类原理形成负载模式簇

G. Chicco, Octavian-Marcel Ionel, R. Porumb
{"title":"利用蚁群聚类原理形成负载模式簇","authors":"G. Chicco, Octavian-Marcel Ionel, R. Porumb","doi":"10.1109/EUROCON.2013.6625170","DOIUrl":null,"url":null,"abstract":"Electrical load pattern clustering provides useful information on how to partition the customers on the basis of the shape of their actual consumption. The results of the clustering procedure are then used to group the customers into classes by identifying a suitable set of attributes describing each class in a non-overlapping way. Starting from an initial set of centroids, it is possible to construct a clustering algorithm to upgrade the clustering results by refining the initial centroids. The Electrical Pattern Ant Colony Clustering (EPACC) method recently introduced by the authors, based on ant colony clustering principles, has been shown to outperform the classical k-means for electrical load pattern clustering based on an initial centroid model. This paper illustrates the genesis of the EPACC algorithm by providing additional information on how the method parameters have been chosen and set up. Examples are taken from a case study application with actual load patterns.","PeriodicalId":136720,"journal":{"name":"Eurocon 2013","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Formation of load pattern clusters exploiting ant colony clustering principles\",\"authors\":\"G. Chicco, Octavian-Marcel Ionel, R. Porumb\",\"doi\":\"10.1109/EUROCON.2013.6625170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical load pattern clustering provides useful information on how to partition the customers on the basis of the shape of their actual consumption. The results of the clustering procedure are then used to group the customers into classes by identifying a suitable set of attributes describing each class in a non-overlapping way. Starting from an initial set of centroids, it is possible to construct a clustering algorithm to upgrade the clustering results by refining the initial centroids. The Electrical Pattern Ant Colony Clustering (EPACC) method recently introduced by the authors, based on ant colony clustering principles, has been shown to outperform the classical k-means for electrical load pattern clustering based on an initial centroid model. This paper illustrates the genesis of the EPACC algorithm by providing additional information on how the method parameters have been chosen and set up. Examples are taken from a case study application with actual load patterns.\",\"PeriodicalId\":136720,\"journal\":{\"name\":\"Eurocon 2013\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurocon 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2013.6625170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurocon 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2013.6625170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

电力负荷模式聚类提供了关于如何根据实际消耗的形状划分客户的有用信息。然后使用聚类过程的结果,通过标识一组以不重叠的方式描述每个类的合适属性,将客户分组到不同的类中。从一组初始质心开始,可以构造一个聚类算法,通过对初始质心的细化来提升聚类结果。基于蚁群聚类原理提出的电模式蚁群聚类(EPACC)方法优于基于初始质心模型的经典k-means聚类方法。本文通过提供关于如何选择和设置方法参数的附加信息来说明EPACC算法的起源。示例取自具有实际负载模式的案例研究应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation of load pattern clusters exploiting ant colony clustering principles
Electrical load pattern clustering provides useful information on how to partition the customers on the basis of the shape of their actual consumption. The results of the clustering procedure are then used to group the customers into classes by identifying a suitable set of attributes describing each class in a non-overlapping way. Starting from an initial set of centroids, it is possible to construct a clustering algorithm to upgrade the clustering results by refining the initial centroids. The Electrical Pattern Ant Colony Clustering (EPACC) method recently introduced by the authors, based on ant colony clustering principles, has been shown to outperform the classical k-means for electrical load pattern clustering based on an initial centroid model. This paper illustrates the genesis of the EPACC algorithm by providing additional information on how the method parameters have been chosen and set up. Examples are taken from a case study application with actual load patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信