基于自动聚类线性判别分析的驾驶员分心监测人脸姿态估计

V. HariC., P. Sankaran
{"title":"基于自动聚类线性判别分析的驾驶员分心监测人脸姿态估计","authors":"V. HariC., P. Sankaran","doi":"10.1109/ICVES.2014.7063731","DOIUrl":null,"url":null,"abstract":"Smooth varying data is hard to classify/divide to separate classes since there is small separation. Large number of close and adjacent poses create smooth varying manifolds. Manual class formation by selecting different data points from entire database into different training classes will affect the error rate in smooth varying data classification. This paper proposes classification of smooth varying data based on clustering and discriminant analysis. The clustering process results in different clusters which can be used for classification based on discriminant analysis. The automated class formation based on the data points in the manifold reduces effort of manual clustering and it gives very comparable results. This pose estimation can be used as a measure of driver distraction monitoring.","PeriodicalId":248904,"journal":{"name":"2014 IEEE International Conference on Vehicular Electronics and Safety","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Face pose estimation for driver distraction monitoring by automatic clustered linear discriminant analysis\",\"authors\":\"V. HariC., P. Sankaran\",\"doi\":\"10.1109/ICVES.2014.7063731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smooth varying data is hard to classify/divide to separate classes since there is small separation. Large number of close and adjacent poses create smooth varying manifolds. Manual class formation by selecting different data points from entire database into different training classes will affect the error rate in smooth varying data classification. This paper proposes classification of smooth varying data based on clustering and discriminant analysis. The clustering process results in different clusters which can be used for classification based on discriminant analysis. The automated class formation based on the data points in the manifold reduces effort of manual clustering and it gives very comparable results. This pose estimation can be used as a measure of driver distraction monitoring.\",\"PeriodicalId\":248904,\"journal\":{\"name\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2014.7063731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2014.7063731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

平滑变化的数据很难分类/划分为独立的类,因为它们之间的分离很小。大量的接近和相邻的姿势创建光滑的变化流形。通过从整个数据库中选择不同的数据点进行不同的训练类,手工形成类会影响平滑变数据分类的错误率。本文提出了基于聚类和判别分析的光滑变化数据分类方法。聚类过程产生不同的聚类,这些聚类可以用于基于判别分析的分类。基于流形中数据点的自动类形成减少了人工聚类的工作量,并给出了非常可比的结果。这种姿态估计可以作为驾驶员分心监测的一种措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face pose estimation for driver distraction monitoring by automatic clustered linear discriminant analysis
Smooth varying data is hard to classify/divide to separate classes since there is small separation. Large number of close and adjacent poses create smooth varying manifolds. Manual class formation by selecting different data points from entire database into different training classes will affect the error rate in smooth varying data classification. This paper proposes classification of smooth varying data based on clustering and discriminant analysis. The clustering process results in different clusters which can be used for classification based on discriminant analysis. The automated class formation based on the data points in the manifold reduces effort of manual clustering and it gives very comparable results. This pose estimation can be used as a measure of driver distraction monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信