大规模全局优化的协同进化与全局搜索

Kai Zhang, Bin Li
{"title":"大规模全局优化的协同进化与全局搜索","authors":"Kai Zhang, Bin Li","doi":"10.1109/CEC.2012.6252936","DOIUrl":null,"url":null,"abstract":"To improve the performance of EAs on large scale numerical optimization problems, a number of techniques have been invented, among which, Cooperative Coevolution (CC in short) is obviously a promising one. But sometimes CC is easy to lead to premature convergence in large scale global optimization. In this paper, a Cooperative Coevolution Evolutionary Algorithm (CCEA in short) with global search (CCGS) is presented to handle large scale global optimization (LSGO) problems. The performance of CCGS is evaluated on the test functions provided for the CEC 2012 competition and special session on Large Scale Global Optimization. The experiment results show that this technique is more effective than CCEAs without global search.","PeriodicalId":376837,"journal":{"name":"2012 IEEE Congress on Evolutionary Computation","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Cooperative Coevolution with global search for large scale global optimization\",\"authors\":\"Kai Zhang, Bin Li\",\"doi\":\"10.1109/CEC.2012.6252936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the performance of EAs on large scale numerical optimization problems, a number of techniques have been invented, among which, Cooperative Coevolution (CC in short) is obviously a promising one. But sometimes CC is easy to lead to premature convergence in large scale global optimization. In this paper, a Cooperative Coevolution Evolutionary Algorithm (CCEA in short) with global search (CCGS) is presented to handle large scale global optimization (LSGO) problems. The performance of CCGS is evaluated on the test functions provided for the CEC 2012 competition and special session on Large Scale Global Optimization. The experiment results show that this technique is more effective than CCEAs without global search.\",\"PeriodicalId\":376837,\"journal\":{\"name\":\"2012 IEEE Congress on Evolutionary Computation\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2012.6252936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6252936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

为了提高ea在大规模数值优化问题上的性能,人们发明了许多技术,其中合作协同进化(Cooperative Coevolution,简称CC)显然是一种很有前途的技术。但有时CC算法在大规模全局优化中容易导致过早收敛。针对大规模全局优化问题,提出了一种全局搜索的协同进化算法(CCEA)。CCGS的性能通过为CEC 2012竞赛和大规模全局优化专题会议提供的测试函数进行了评估。实验结果表明,该方法比不进行全局搜索的ccea更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative Coevolution with global search for large scale global optimization
To improve the performance of EAs on large scale numerical optimization problems, a number of techniques have been invented, among which, Cooperative Coevolution (CC in short) is obviously a promising one. But sometimes CC is easy to lead to premature convergence in large scale global optimization. In this paper, a Cooperative Coevolution Evolutionary Algorithm (CCEA in short) with global search (CCGS) is presented to handle large scale global optimization (LSGO) problems. The performance of CCGS is evaluated on the test functions provided for the CEC 2012 competition and special session on Large Scale Global Optimization. The experiment results show that this technique is more effective than CCEAs without global search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信