状态估计的随机事件触发粒子滤波

N. S. Nokhodberiz, M. Davoodi, N. Meskin
{"title":"状态估计的随机事件触发粒子滤波","authors":"N. S. Nokhodberiz, M. Davoodi, N. Meskin","doi":"10.1109/EBCCSP.2016.7605251","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of event-triggered (ET) state estimation is studied for nonlinear non-Gaussian systems. Particle filtering (PF) state estimation approach is developed for systems with stochastic ET measurements to overcome the computational problem in minimum mean square error (MMSE) estimators in which the posterior probability function is non-Gaussian due to ET measurement information. The proposed event triggered particle filtering (ETPF) not only solves the problem of non-Gaussianity but also can handle any functional nonlinearity in the system. It is proved that particles are weighted by the predicted event-triggering (ET) probability density function in the estimator side. The application of the proposed methodology to an interconnected four-tank system is also provided to illustrate and demonstrate the effectiveness of our proposed design methodology.","PeriodicalId":411767,"journal":{"name":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Stochastic event-triggered particle filtering for state estimation\",\"authors\":\"N. S. Nokhodberiz, M. Davoodi, N. Meskin\",\"doi\":\"10.1109/EBCCSP.2016.7605251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of event-triggered (ET) state estimation is studied for nonlinear non-Gaussian systems. Particle filtering (PF) state estimation approach is developed for systems with stochastic ET measurements to overcome the computational problem in minimum mean square error (MMSE) estimators in which the posterior probability function is non-Gaussian due to ET measurement information. The proposed event triggered particle filtering (ETPF) not only solves the problem of non-Gaussianity but also can handle any functional nonlinearity in the system. It is proved that particles are weighted by the predicted event-triggering (ET) probability density function in the estimator side. The application of the proposed methodology to an interconnected four-tank system is also provided to illustrate and demonstrate the effectiveness of our proposed design methodology.\",\"PeriodicalId\":411767,\"journal\":{\"name\":\"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBCCSP.2016.7605251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBCCSP.2016.7605251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了非线性非高斯系统的事件触发(ET)状态估计问题。针对随机ET测量系统,提出了粒子滤波(PF)状态估计方法,克服了最小均方误差(MMSE)估计中由于ET测量信息导致后验概率函数非高斯的计算问题。所提出的事件触发粒子滤波(ETPF)不仅解决了系统的非高斯性问题,而且可以处理系统中的任何泛函非线性。证明了粒子在估计量侧由预测的事件触发(ET)概率密度函数加权。还提供了将所提出的方法应用于相互连接的四罐系统来说明和证明我们所提出的设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic event-triggered particle filtering for state estimation
In this paper, the problem of event-triggered (ET) state estimation is studied for nonlinear non-Gaussian systems. Particle filtering (PF) state estimation approach is developed for systems with stochastic ET measurements to overcome the computational problem in minimum mean square error (MMSE) estimators in which the posterior probability function is non-Gaussian due to ET measurement information. The proposed event triggered particle filtering (ETPF) not only solves the problem of non-Gaussianity but also can handle any functional nonlinearity in the system. It is proved that particles are weighted by the predicted event-triggering (ET) probability density function in the estimator side. The application of the proposed methodology to an interconnected four-tank system is also provided to illustrate and demonstrate the effectiveness of our proposed design methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信