自适应核密度估计与高斯混合回归在外表面运动实时肿瘤运动预测的比较

F. Tahavori, M. Alnowami, K. Wells
{"title":"自适应核密度估计与高斯混合回归在外表面运动实时肿瘤运动预测的比较","authors":"F. Tahavori, M. Alnowami, K. Wells","doi":"10.1109/NSSMIC.2012.6551895","DOIUrl":null,"url":null,"abstract":"In this present study, tumour (3D) locations are predicted via external surface motion, extracted from abdomen/thoracic surface measurements that can be used to enhance dose targeting in external beam radiotherapy. Canonical Correlation Analysis (CCA) is applied to the surface and tumour motion data to maximise the correlation between them. This correlation is exploited for motion prediction [1]. Nine dynamic CT datasets were used to extract the surface and tumour motion and to create the Canonical Correlation model (CCM). Gaussian Mixture Regression (GMR) and Adaptive Kernel Density Estimation (AKDE) were trained on these nine datasets to predict the respiratory signal by updating the surface motion and CCM. A leave-one-out method was used to evaluate and compare the performance of GMR and AKDE in predicting the tumour motion.","PeriodicalId":187728,"journal":{"name":"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparison between adaptive kernel density estimation and Gaussian Mixture Regression for real-time tumour motion prediction from external surface motion\",\"authors\":\"F. Tahavori, M. Alnowami, K. Wells\",\"doi\":\"10.1109/NSSMIC.2012.6551895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this present study, tumour (3D) locations are predicted via external surface motion, extracted from abdomen/thoracic surface measurements that can be used to enhance dose targeting in external beam radiotherapy. Canonical Correlation Analysis (CCA) is applied to the surface and tumour motion data to maximise the correlation between them. This correlation is exploited for motion prediction [1]. Nine dynamic CT datasets were used to extract the surface and tumour motion and to create the Canonical Correlation model (CCM). Gaussian Mixture Regression (GMR) and Adaptive Kernel Density Estimation (AKDE) were trained on these nine datasets to predict the respiratory signal by updating the surface motion and CCM. A leave-one-out method was used to evaluate and compare the performance of GMR and AKDE in predicting the tumour motion.\",\"PeriodicalId\":187728,\"journal\":{\"name\":\"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2012.6551895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2012.6551895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在目前的研究中,肿瘤(3D)位置通过外表面运动预测,从腹部/胸部表面测量中提取,可用于增强外束放疗的剂量靶向。典型相关分析(CCA)应用于表面和肿瘤运动数据,以最大限度地提高它们之间的相关性。这种相关性被用于运动预测[1]。使用9个动态CT数据集提取表面和肿瘤运动,并创建典型相关模型(CCM)。在这9个数据集上训练高斯混合回归(GMR)和自适应核密度估计(AKDE),通过更新地表运动和CCM来预测呼吸信号。采用留一法对GMR和AKDE预测肿瘤运动的性能进行评价和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison between adaptive kernel density estimation and Gaussian Mixture Regression for real-time tumour motion prediction from external surface motion
In this present study, tumour (3D) locations are predicted via external surface motion, extracted from abdomen/thoracic surface measurements that can be used to enhance dose targeting in external beam radiotherapy. Canonical Correlation Analysis (CCA) is applied to the surface and tumour motion data to maximise the correlation between them. This correlation is exploited for motion prediction [1]. Nine dynamic CT datasets were used to extract the surface and tumour motion and to create the Canonical Correlation model (CCM). Gaussian Mixture Regression (GMR) and Adaptive Kernel Density Estimation (AKDE) were trained on these nine datasets to predict the respiratory signal by updating the surface motion and CCM. A leave-one-out method was used to evaluate and compare the performance of GMR and AKDE in predicting the tumour motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信