{"title":"二维扭曲测量QT变异性","authors":"S. Zaunseder, M. Schmidt, H. Malberg, M. Baumert","doi":"10.1109/ESGCO.2014.6847570","DOIUrl":null,"url":null,"abstract":"This contribution presents a novel warping method, two-dimensional signal warping (2DSW), for tracking beat-to-beat changes in time intervals from electrocardiograms. To evaluate the efficiency of 2DSW to capture subtle changes in the QT interval we apply 2DSW to the Physionet QT database. It is shown that 2DSW allows highly accurate tracking of QRS-onset and T-end, which renders the method useful for future clinical applications, in particular beat-to-beat variability analysis of ECG features.","PeriodicalId":385389,"journal":{"name":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Measurement of QT variability by two-dimensional warping\",\"authors\":\"S. Zaunseder, M. Schmidt, H. Malberg, M. Baumert\",\"doi\":\"10.1109/ESGCO.2014.6847570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution presents a novel warping method, two-dimensional signal warping (2DSW), for tracking beat-to-beat changes in time intervals from electrocardiograms. To evaluate the efficiency of 2DSW to capture subtle changes in the QT interval we apply 2DSW to the Physionet QT database. It is shown that 2DSW allows highly accurate tracking of QRS-onset and T-end, which renders the method useful for future clinical applications, in particular beat-to-beat variability analysis of ECG features.\",\"PeriodicalId\":385389,\"journal\":{\"name\":\"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESGCO.2014.6847570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESGCO.2014.6847570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurement of QT variability by two-dimensional warping
This contribution presents a novel warping method, two-dimensional signal warping (2DSW), for tracking beat-to-beat changes in time intervals from electrocardiograms. To evaluate the efficiency of 2DSW to capture subtle changes in the QT interval we apply 2DSW to the Physionet QT database. It is shown that 2DSW allows highly accurate tracking of QRS-onset and T-end, which renders the method useful for future clinical applications, in particular beat-to-beat variability analysis of ECG features.