基于物联网架构的颗粒物2.5机器学习估计系统

Shun-Yuan Wang, Wen-Bin Lin, Yu-Chieh Shu
{"title":"基于物联网架构的颗粒物2.5机器学习估计系统","authors":"Shun-Yuan Wang, Wen-Bin Lin, Yu-Chieh Shu","doi":"10.1109/IS3C50286.2020.00099","DOIUrl":null,"url":null,"abstract":"This study designs a mobile air pollution sensing system to monitor the concentration of particulate matter 2.5 in the metropolitan area based on the Internet of Things. The measurement system can improve the weakness that sparse data of government-managed fixed monitoring stations, and can more accurately describe the pollution levels of various areas of the metropolitan. The estimation system uses four regression models which contain Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN). The results show that RF is better than other regression models in training set and testing set. In order to verify the generalization ability of the learning model, we selects three days for field verifications, on 2019/02/15, 2019/02/28 and 2019/03/01. The predictions can be visualized through the web application, and the map form allows the user intuitively understand the distribution of the contaminated area.","PeriodicalId":143430,"journal":{"name":"2020 International Symposium on Computer, Consumer and Control (IS3C)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Particulate Matter 2.5 Machine Learning Estimation System Based on Internet of Things Architecture\",\"authors\":\"Shun-Yuan Wang, Wen-Bin Lin, Yu-Chieh Shu\",\"doi\":\"10.1109/IS3C50286.2020.00099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study designs a mobile air pollution sensing system to monitor the concentration of particulate matter 2.5 in the metropolitan area based on the Internet of Things. The measurement system can improve the weakness that sparse data of government-managed fixed monitoring stations, and can more accurately describe the pollution levels of various areas of the metropolitan. The estimation system uses four regression models which contain Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN). The results show that RF is better than other regression models in training set and testing set. In order to verify the generalization ability of the learning model, we selects three days for field verifications, on 2019/02/15, 2019/02/28 and 2019/03/01. The predictions can be visualized through the web application, and the map form allows the user intuitively understand the distribution of the contaminated area.\",\"PeriodicalId\":143430,\"journal\":{\"name\":\"2020 International Symposium on Computer, Consumer and Control (IS3C)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Computer, Consumer and Control (IS3C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS3C50286.2020.00099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C50286.2020.00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究设计了一种基于物联网的移动空气污染传感系统,用于监测大都市地区pm2.5浓度。该测量系统可以改善政府管理的固定监测站数据稀疏的缺点,更准确地描述城市各区域的污染水平。该估计系统采用决策树(DT)、随机森林(RF)、多层感知器(MLP)和径向基函数神经网络(RBFNN)四种回归模型。结果表明,射频回归模型在训练集和测试集上都优于其他回归模型。为了验证学习模型的泛化能力,我们选择了2019/02/15、2019/02/28和2019/03/01三天进行现场验证。预测结果可以通过web应用可视化,以地图的形式让用户直观地了解污染区域的分布情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particulate Matter 2.5 Machine Learning Estimation System Based on Internet of Things Architecture
This study designs a mobile air pollution sensing system to monitor the concentration of particulate matter 2.5 in the metropolitan area based on the Internet of Things. The measurement system can improve the weakness that sparse data of government-managed fixed monitoring stations, and can more accurately describe the pollution levels of various areas of the metropolitan. The estimation system uses four regression models which contain Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN). The results show that RF is better than other regression models in training set and testing set. In order to verify the generalization ability of the learning model, we selects three days for field verifications, on 2019/02/15, 2019/02/28 and 2019/03/01. The predictions can be visualized through the web application, and the map form allows the user intuitively understand the distribution of the contaminated area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信