利用迁移学习从人类或非人类社交媒体个人资料照片中预测性别

S. Sakib, Nur Mohammad Fahad, Mohaimenul Azam Khan Raiaan, Md. Anisur Rahman, Abdullah Al Mamun, Salekul Islam, Md. Saddam Hossain Mukta
{"title":"利用迁移学习从人类或非人类社交媒体个人资料照片中预测性别","authors":"S. Sakib, Nur Mohammad Fahad, Mohaimenul Azam Khan Raiaan, Md. Anisur Rahman, Abdullah Al Mamun, Salekul Islam, Md. Saddam Hossain Mukta","doi":"10.1109/ICCECE51049.2023.10085525","DOIUrl":null,"url":null,"abstract":"Social media profile photos can demonstrate a variety of information about a person, including her personality, behavior, preference, individuality, and gender. Prediction of gender from social media photos has a number of real life applications such as gender marketing and identification of camouflaged profile photos. Numerous techniques can be applied for determining gender from a user’s profile photos. In this study, we predict a user’s gender from her social media profile photos (i.e., Facebook, Twitter, and Instagram) by using multiple transfer learning models. While conventional methods are straightforward and can only determine gender based on human faces, we propose a novel model that determines gender based on both human faces and non-human pictures (i.e., a flower, animal, cartoon, doll, etc.). The model predicts the gender of a user based on the pattern of sharing profile photos with an outstanding accuracy of 95.75%.","PeriodicalId":447131,"journal":{"name":"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Gender from Human or Non-human Social Media Profile Photos by using Transfer Learning\",\"authors\":\"S. Sakib, Nur Mohammad Fahad, Mohaimenul Azam Khan Raiaan, Md. Anisur Rahman, Abdullah Al Mamun, Salekul Islam, Md. Saddam Hossain Mukta\",\"doi\":\"10.1109/ICCECE51049.2023.10085525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media profile photos can demonstrate a variety of information about a person, including her personality, behavior, preference, individuality, and gender. Prediction of gender from social media photos has a number of real life applications such as gender marketing and identification of camouflaged profile photos. Numerous techniques can be applied for determining gender from a user’s profile photos. In this study, we predict a user’s gender from her social media profile photos (i.e., Facebook, Twitter, and Instagram) by using multiple transfer learning models. While conventional methods are straightforward and can only determine gender based on human faces, we propose a novel model that determines gender based on both human faces and non-human pictures (i.e., a flower, animal, cartoon, doll, etc.). The model predicts the gender of a user based on the pattern of sharing profile photos with an outstanding accuracy of 95.75%.\",\"PeriodicalId\":447131,\"journal\":{\"name\":\"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE51049.2023.10085525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE51049.2023.10085525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社交媒体上的个人资料照片可以展示一个人的各种信息,包括她的个性、行为、偏好、个性和性别。从社交媒体照片中预测性别在现实生活中有很多应用,比如性别营销和识别伪装的个人资料照片。有许多技术可以用来从用户的个人资料照片中确定性别。在这项研究中,我们通过使用多个迁移学习模型,从她的社交媒体个人资料照片(即Facebook, Twitter和Instagram)中预测用户的性别。传统的方法很简单,只能根据人脸来确定性别,而我们提出了一个基于人脸和非人类图片(如花、动物、卡通、玩偶等)来确定性别的新模型。该模型基于个人资料照片的共享模式预测用户的性别,准确率达到95.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Gender from Human or Non-human Social Media Profile Photos by using Transfer Learning
Social media profile photos can demonstrate a variety of information about a person, including her personality, behavior, preference, individuality, and gender. Prediction of gender from social media photos has a number of real life applications such as gender marketing and identification of camouflaged profile photos. Numerous techniques can be applied for determining gender from a user’s profile photos. In this study, we predict a user’s gender from her social media profile photos (i.e., Facebook, Twitter, and Instagram) by using multiple transfer learning models. While conventional methods are straightforward and can only determine gender based on human faces, we propose a novel model that determines gender based on both human faces and non-human pictures (i.e., a flower, animal, cartoon, doll, etc.). The model predicts the gender of a user based on the pattern of sharing profile photos with an outstanding accuracy of 95.75%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信