基于调整长短期记忆模型的以太坊价格预测

Marko Stankovic, N. Bačanin, M. Zivkovic, Luka Jovanovic, Joseph Mani, Milos Antonijevic
{"title":"基于调整长短期记忆模型的以太坊价格预测","authors":"Marko Stankovic, N. Bačanin, M. Zivkovic, Luka Jovanovic, Joseph Mani, Milos Antonijevic","doi":"10.1109/TELFOR56187.2022.9983702","DOIUrl":null,"url":null,"abstract":"Cryptocurrencies have established a firm position in the economic world in the past decade, with thousands of distinctive currencies available for electronic payments. The majority of cryptocurrencies, however, experience extremely volatile price perturbations, drastically affecting investors and traders. To address this problem, this paper proposes long short-term memory approach tuned by salp swarm metaheuristics. This hybrid model has been validated on a benchmark financial dataset, and the outcomes have been compared to other cutting-edge methods. The results suggest that the proposed method outperformed the competitors, showing significant potential in time-series prediction tasks.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Forecasting Ethereum Price by Tuned Long Short-Term Memory Model\",\"authors\":\"Marko Stankovic, N. Bačanin, M. Zivkovic, Luka Jovanovic, Joseph Mani, Milos Antonijevic\",\"doi\":\"10.1109/TELFOR56187.2022.9983702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryptocurrencies have established a firm position in the economic world in the past decade, with thousands of distinctive currencies available for electronic payments. The majority of cryptocurrencies, however, experience extremely volatile price perturbations, drastically affecting investors and traders. To address this problem, this paper proposes long short-term memory approach tuned by salp swarm metaheuristics. This hybrid model has been validated on a benchmark financial dataset, and the outcomes have been compared to other cutting-edge methods. The results suggest that the proposed method outperformed the competitors, showing significant potential in time-series prediction tasks.\",\"PeriodicalId\":277553,\"journal\":{\"name\":\"2022 30th Telecommunications Forum (TELFOR)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Telecommunications Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR56187.2022.9983702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的十年里,加密货币在经济世界中建立了稳固的地位,有数千种不同的货币可用于电子支付。然而,大多数加密货币都经历了极不稳定的价格波动,极大地影响了投资者和交易者。为了解决这一问题,本文提出了一种基于salp群元启发式的长短期记忆方法。该混合模型已在基准金融数据集上进行了验证,并将结果与其他前沿方法进行了比较。结果表明,该方法优于竞争对手,在时间序列预测任务中显示出显著的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Ethereum Price by Tuned Long Short-Term Memory Model
Cryptocurrencies have established a firm position in the economic world in the past decade, with thousands of distinctive currencies available for electronic payments. The majority of cryptocurrencies, however, experience extremely volatile price perturbations, drastically affecting investors and traders. To address this problem, this paper proposes long short-term memory approach tuned by salp swarm metaheuristics. This hybrid model has been validated on a benchmark financial dataset, and the outcomes have been compared to other cutting-edge methods. The results suggest that the proposed method outperformed the competitors, showing significant potential in time-series prediction tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信