双目标置换流水车间调度的改进多目标模因算法

Zhekun Zhao, Xue-qing He, Feng Liu
{"title":"双目标置换流水车间调度的改进多目标模因算法","authors":"Zhekun Zhao, Xue-qing He, Feng Liu","doi":"10.1109/ICSSSM.2017.7996154","DOIUrl":null,"url":null,"abstract":"A permutation flowshop scheduling problem of optimizing the makespan and the total flow time, which can be expressed as Fm|prum|(Cmax, ΣCi), is considered in this paper. An improved multi-objective memetic algorithm (IMOMA) is proposed due to the NP-hardness of the problem. In order to effectively trade-off between two objectives, we propose a NEH and LR heuristic based initialization strategy and a powerful local search strategy, in the searching framework of memetic algorithm. Finally, we perform computational experiments by solving ten largest scale instances of Taillard benchmarks, with 500 jobs and 20 machines. The results demonstrate that the proposed IMOMA outperforms the NEHFF heuristic and two state-of-the-art evolutionary multi-objective algorithms, NSGA-II and MOEA/D with respect to convergence and diversity.","PeriodicalId":239892,"journal":{"name":"2017 International Conference on Service Systems and Service Management","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An improved multi-objective memetic algorithm for bi-objective permutation flow shop scheduling\",\"authors\":\"Zhekun Zhao, Xue-qing He, Feng Liu\",\"doi\":\"10.1109/ICSSSM.2017.7996154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A permutation flowshop scheduling problem of optimizing the makespan and the total flow time, which can be expressed as Fm|prum|(Cmax, ΣCi), is considered in this paper. An improved multi-objective memetic algorithm (IMOMA) is proposed due to the NP-hardness of the problem. In order to effectively trade-off between two objectives, we propose a NEH and LR heuristic based initialization strategy and a powerful local search strategy, in the searching framework of memetic algorithm. Finally, we perform computational experiments by solving ten largest scale instances of Taillard benchmarks, with 500 jobs and 20 machines. The results demonstrate that the proposed IMOMA outperforms the NEHFF heuristic and two state-of-the-art evolutionary multi-objective algorithms, NSGA-II and MOEA/D with respect to convergence and diversity.\",\"PeriodicalId\":239892,\"journal\":{\"name\":\"2017 International Conference on Service Systems and Service Management\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Service Systems and Service Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSSM.2017.7996154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Service Systems and Service Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2017.7996154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了一个以最大完工时间和总流时间为优化目标的置换流水车间调度问题,其表达式为Fm|prum|(Cmax, ΣCi)。针对该问题的np -硬度,提出了一种改进的多目标模因算法。在模因算法的搜索框架中,提出了一种基于NEH和LR的启发式初始化策略和一种强大的局部搜索策略,以实现两个目标之间的有效权衡。最后,我们通过求解10个最大规模的Taillard基准实例,使用500个工作和20台机器进行计算实验。结果表明,该算法在收敛性和多样性方面优于NEHFF启发式算法和两种最先进的进化多目标算法NSGA-II和MOEA/D。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved multi-objective memetic algorithm for bi-objective permutation flow shop scheduling
A permutation flowshop scheduling problem of optimizing the makespan and the total flow time, which can be expressed as Fm|prum|(Cmax, ΣCi), is considered in this paper. An improved multi-objective memetic algorithm (IMOMA) is proposed due to the NP-hardness of the problem. In order to effectively trade-off between two objectives, we propose a NEH and LR heuristic based initialization strategy and a powerful local search strategy, in the searching framework of memetic algorithm. Finally, we perform computational experiments by solving ten largest scale instances of Taillard benchmarks, with 500 jobs and 20 machines. The results demonstrate that the proposed IMOMA outperforms the NEHFF heuristic and two state-of-the-art evolutionary multi-objective algorithms, NSGA-II and MOEA/D with respect to convergence and diversity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信