学习Twitter的情感影响

Ye Wu, F. Ren
{"title":"学习Twitter的情感影响","authors":"Ye Wu, F. Ren","doi":"10.1109/ICFCSA.2011.34","DOIUrl":null,"url":null,"abstract":"Recently, research about social networks has attracted tremendous interests. It can be considered that the links of online social networks describe the relationships between individuals. Analyzing online data from social networks provides opportunities for extracting attributes of sentimental influence, which also helps to get over the corner of current research on sentiment analysis. In this paper we design models to learn both sentimental influencing probabilities and influenced probabilities for users of Twitter, one of the most popular online social media. We find that there is a high correlation between Twitter users' influencing probabilities and influenced probabilities, and the majority of users keep sentimental balance on both.","PeriodicalId":141108,"journal":{"name":"2011 International Conference on Future Computer Sciences and Application","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Learning Sentimental Influence in Twitter\",\"authors\":\"Ye Wu, F. Ren\",\"doi\":\"10.1109/ICFCSA.2011.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, research about social networks has attracted tremendous interests. It can be considered that the links of online social networks describe the relationships between individuals. Analyzing online data from social networks provides opportunities for extracting attributes of sentimental influence, which also helps to get over the corner of current research on sentiment analysis. In this paper we design models to learn both sentimental influencing probabilities and influenced probabilities for users of Twitter, one of the most popular online social media. We find that there is a high correlation between Twitter users' influencing probabilities and influenced probabilities, and the majority of users keep sentimental balance on both.\",\"PeriodicalId\":141108,\"journal\":{\"name\":\"2011 International Conference on Future Computer Sciences and Application\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Future Computer Sciences and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFCSA.2011.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Future Computer Sciences and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFCSA.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

近年来,关于社交网络的研究引起了人们极大的兴趣。可以认为,在线社交网络的链接描述了个体之间的关系。分析来自社交网络的在线数据为提取情感影响的属性提供了机会,这也有助于克服当前情感分析研究的瓶颈。在本文中,我们设计模型来学习最受欢迎的在线社交媒体之一Twitter用户的情感影响概率和影响概率。我们发现Twitter用户的影响概率和被影响概率之间存在高度的相关性,并且大多数用户在两者上保持情感平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Sentimental Influence in Twitter
Recently, research about social networks has attracted tremendous interests. It can be considered that the links of online social networks describe the relationships between individuals. Analyzing online data from social networks provides opportunities for extracting attributes of sentimental influence, which also helps to get over the corner of current research on sentiment analysis. In this paper we design models to learn both sentimental influencing probabilities and influenced probabilities for users of Twitter, one of the most popular online social media. We find that there is a high correlation between Twitter users' influencing probabilities and influenced probabilities, and the majority of users keep sentimental balance on both.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信