活塞升程止回阀流量CFD验证

M. Laney, Ronald S. Farrell
{"title":"活塞升程止回阀流量CFD验证","authors":"M. Laney, Ronald S. Farrell","doi":"10.1115/PVP2018-84672","DOIUrl":null,"url":null,"abstract":"Computational Fluid Dynamics (CFD) is increasingly being used as a reliable method for determining flow characteristics of a wide range of flow situations. This paper presents an extension of paper PVP2017-66269, “Check Valve Flow and Disk Lift Simulation Using CFD” [1], and utilizes some of the same concepts to characterize flow through piston-lift check valves. The previous example considered a swing check valve involving rotational movement; this example considers a vertical lift piston check valve involving translational movement. Specifically, CFD was used to determine valve flow coefficients (CV) as a function of disk lift position as well as to determine the flow rate required to achieve full open or predict intermediate disk lift positions. The CFX application, which is part of the ANSYS suite of finite element software, was used to determine the flow characteristics. As presented in PVP2017-66269, balancing flow-induced forces on the check element and considering the disk assembly weight, the valve lift behavior can be predicted. Results from the CFX analysis were compared to recent test results of a skirted disk-piston check valve and previous test results of a standard disk-piston check valve. The results showed good agreement in most cases. This validates that flow characteristics across valves with different types of check elements at different disk lift positions can be reliably predicted using CFD analysis. It is important to note that while the test results and CFD analysis showed good agreement, it was vital that actual testing be performed in order to validate the approach. This follows the recommendation outlined in the previous paper.","PeriodicalId":339189,"journal":{"name":"Volume 7: Operations, Applications, and Components","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piston-Lift Check Valve Flow Verification Using CFD\",\"authors\":\"M. Laney, Ronald S. Farrell\",\"doi\":\"10.1115/PVP2018-84672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational Fluid Dynamics (CFD) is increasingly being used as a reliable method for determining flow characteristics of a wide range of flow situations. This paper presents an extension of paper PVP2017-66269, “Check Valve Flow and Disk Lift Simulation Using CFD” [1], and utilizes some of the same concepts to characterize flow through piston-lift check valves. The previous example considered a swing check valve involving rotational movement; this example considers a vertical lift piston check valve involving translational movement. Specifically, CFD was used to determine valve flow coefficients (CV) as a function of disk lift position as well as to determine the flow rate required to achieve full open or predict intermediate disk lift positions. The CFX application, which is part of the ANSYS suite of finite element software, was used to determine the flow characteristics. As presented in PVP2017-66269, balancing flow-induced forces on the check element and considering the disk assembly weight, the valve lift behavior can be predicted. Results from the CFX analysis were compared to recent test results of a skirted disk-piston check valve and previous test results of a standard disk-piston check valve. The results showed good agreement in most cases. This validates that flow characteristics across valves with different types of check elements at different disk lift positions can be reliably predicted using CFD analysis. It is important to note that while the test results and CFD analysis showed good agreement, it was vital that actual testing be performed in order to validate the approach. This follows the recommendation outlined in the previous paper.\",\"PeriodicalId\":339189,\"journal\":{\"name\":\"Volume 7: Operations, Applications, and Components\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Operations, Applications, and Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Operations, Applications, and Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算流体力学(CFD)作为一种可靠的方法被越来越多地用于确定各种流动情况下的流动特性。本文对论文PVP2017-66269(“使用CFD的止回阀流量和盘升模拟”[1])进行了扩展,并使用了一些相同的概念来表征活塞升止回阀的流量。前面的例子考虑了涉及旋转运动的旋启式止回阀;本例考虑涉及平移运动的垂直升降活塞止回阀。具体来说,CFD用于确定阀门流量系数(CV)作为阀瓣升力位置的函数,以及确定达到全开或预测中间阀瓣升力位置所需的流量。CFX应用程序是ANSYS有限元软件套件的一部分,用于确定流动特性。如PVP2017-66269所述,通过平衡止回元件上的流量诱导力并考虑阀瓣总成重量,可以预测阀门的升程行为。CFX分析结果与最近的边缘阀瓣活塞止回阀测试结果和之前的标准阀瓣活塞止回阀测试结果进行了比较。结果在大多数情况下显示出良好的一致性。这验证了使用CFD分析可以可靠地预测不同类型止回阀在不同盘升位置上的流动特性。值得注意的是,虽然测试结果和CFD分析显示出良好的一致性,但为了验证该方法,进行实际测试是至关重要的。这是在前一份文件中概述的建议之后提出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piston-Lift Check Valve Flow Verification Using CFD
Computational Fluid Dynamics (CFD) is increasingly being used as a reliable method for determining flow characteristics of a wide range of flow situations. This paper presents an extension of paper PVP2017-66269, “Check Valve Flow and Disk Lift Simulation Using CFD” [1], and utilizes some of the same concepts to characterize flow through piston-lift check valves. The previous example considered a swing check valve involving rotational movement; this example considers a vertical lift piston check valve involving translational movement. Specifically, CFD was used to determine valve flow coefficients (CV) as a function of disk lift position as well as to determine the flow rate required to achieve full open or predict intermediate disk lift positions. The CFX application, which is part of the ANSYS suite of finite element software, was used to determine the flow characteristics. As presented in PVP2017-66269, balancing flow-induced forces on the check element and considering the disk assembly weight, the valve lift behavior can be predicted. Results from the CFX analysis were compared to recent test results of a skirted disk-piston check valve and previous test results of a standard disk-piston check valve. The results showed good agreement in most cases. This validates that flow characteristics across valves with different types of check elements at different disk lift positions can be reliably predicted using CFD analysis. It is important to note that while the test results and CFD analysis showed good agreement, it was vital that actual testing be performed in order to validate the approach. This follows the recommendation outlined in the previous paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信