涡丝系统的平均场方程

Ken Sawada, Takashi Suzuki
{"title":"涡丝系统的平均场方程","authors":"Ken Sawada, Takashi Suzuki","doi":"10.11345/NCTAM.61.201","DOIUrl":null,"url":null,"abstract":"We consider vortex filament systems which is regarded as a three dimensional extension of the point vortex system introduced by Onsager to investigate the 2D turbulence. We show that this system is equipped with a dual variational structure as in the case of the point vortex system, and that the mean field equations for the system in terms of the stream function and the vorticity are derived from a Lagrangian. In addition, we discuss the existence of solutions to the mean field equations.","PeriodicalId":330369,"journal":{"name":"Theoretical and applied mechanics Japan","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean Field Equation for Vortex Filament Systems\",\"authors\":\"Ken Sawada, Takashi Suzuki\",\"doi\":\"10.11345/NCTAM.61.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider vortex filament systems which is regarded as a three dimensional extension of the point vortex system introduced by Onsager to investigate the 2D turbulence. We show that this system is equipped with a dual variational structure as in the case of the point vortex system, and that the mean field equations for the system in terms of the stream function and the vorticity are derived from a Lagrangian. In addition, we discuss the existence of solutions to the mean field equations.\",\"PeriodicalId\":330369,\"journal\":{\"name\":\"Theoretical and applied mechanics Japan\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and applied mechanics Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11345/NCTAM.61.201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and applied mechanics Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11345/NCTAM.61.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将涡丝系统作为Onsager引入的点涡系统的三维扩展来研究二维湍流。我们证明了该系统具有与点涡系统一样的对偶变分结构,并且该系统的流函数和涡度的平均场方程是由拉格朗日量导出的。此外,我们还讨论了平均场方程解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean Field Equation for Vortex Filament Systems
We consider vortex filament systems which is regarded as a three dimensional extension of the point vortex system introduced by Onsager to investigate the 2D turbulence. We show that this system is equipped with a dual variational structure as in the case of the point vortex system, and that the mean field equations for the system in terms of the stream function and the vorticity are derived from a Lagrangian. In addition, we discuss the existence of solutions to the mean field equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信