异步随机学习控制方法研究

S. Zeng-qi, Deng Zhidong
{"title":"异步随机学习控制方法研究","authors":"S. Zeng-qi, Deng Zhidong","doi":"10.1109/TENCON.1993.320499","DOIUrl":null,"url":null,"abstract":"In view of the limitation that a general asynchronous learning control method is unable to cope with systems with measurement noise, an asynchronous stochastic learning control system (ASLC) using stochastic approximation algorithm, is proposed. The corresponding convergence proof is given. To improve the convergence rate of stochastic approximation, ASLC with acceleration factor is further presented. A simulation example is given.<<ETX>>","PeriodicalId":110496,"journal":{"name":"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On asynchronous stochastic learning control method\",\"authors\":\"S. Zeng-qi, Deng Zhidong\",\"doi\":\"10.1109/TENCON.1993.320499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the limitation that a general asynchronous learning control method is unable to cope with systems with measurement noise, an asynchronous stochastic learning control system (ASLC) using stochastic approximation algorithm, is proposed. The corresponding convergence proof is given. To improve the convergence rate of stochastic approximation, ASLC with acceleration factor is further presented. A simulation example is given.<<ETX>>\",\"PeriodicalId\":110496,\"journal\":{\"name\":\"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.1993.320499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1993.320499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对一般异步学习控制方法无法应对测量噪声系统的局限性,提出了一种采用随机逼近算法的异步随机学习控制系统。给出了相应的收敛性证明。为了提高随机逼近的收敛速度,进一步提出了带加速因子的ASLC。给出了一个仿真实例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On asynchronous stochastic learning control method
In view of the limitation that a general asynchronous learning control method is unable to cope with systems with measurement noise, an asynchronous stochastic learning control system (ASLC) using stochastic approximation algorithm, is proposed. The corresponding convergence proof is given. To improve the convergence rate of stochastic approximation, ASLC with acceleration factor is further presented. A simulation example is given.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信