利用诊断特征误差特征从多导联心电图检测心脏疾病

R. Tripathy, L. Sharma, S. Dandapat
{"title":"利用诊断特征误差特征从多导联心电图检测心脏疾病","authors":"R. Tripathy, L. Sharma, S. Dandapat","doi":"10.1109/PCITC.2015.7438157","DOIUrl":null,"url":null,"abstract":"Accurate detection of life-threatening cardiac ailments is one of the important task in monitoring patient's health. In this paper, a new method for detection and classification of cardiac ailments from multilead electrocardiogram (MECG) is presented. The singular value decomposition (SVD) is used to convert the MECG data matrix into two unitary matrices (eigen matrices) and one diagonal matrix. According to clinical importance, first few atoms from the eigen matrices are selected. The root mean square error (RMSE) between the unitary matrices of both template MECG and analyzed MECG are used as diagnostic eigen error (DEE) features. The combination of singular values of analyzed MECG and DEE features are used as input to the least square support vector machine (LSSVM) classifier. The LSSVM detect the cardiac ailments such as myocardial infarction and hypertrophy. An average accuracy of 95.07% is found using LSSVM classifier with radial basis function (RBF) kernel and 5-fold cross-validation scheme.","PeriodicalId":253244,"journal":{"name":"2015 IEEE Power, Communication and Information Technology Conference (PCITC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection of cardiac ailments from multilead ECG using diagnostic eigen error features\",\"authors\":\"R. Tripathy, L. Sharma, S. Dandapat\",\"doi\":\"10.1109/PCITC.2015.7438157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate detection of life-threatening cardiac ailments is one of the important task in monitoring patient's health. In this paper, a new method for detection and classification of cardiac ailments from multilead electrocardiogram (MECG) is presented. The singular value decomposition (SVD) is used to convert the MECG data matrix into two unitary matrices (eigen matrices) and one diagonal matrix. According to clinical importance, first few atoms from the eigen matrices are selected. The root mean square error (RMSE) between the unitary matrices of both template MECG and analyzed MECG are used as diagnostic eigen error (DEE) features. The combination of singular values of analyzed MECG and DEE features are used as input to the least square support vector machine (LSSVM) classifier. The LSSVM detect the cardiac ailments such as myocardial infarction and hypertrophy. An average accuracy of 95.07% is found using LSSVM classifier with radial basis function (RBF) kernel and 5-fold cross-validation scheme.\",\"PeriodicalId\":253244,\"journal\":{\"name\":\"2015 IEEE Power, Communication and Information Technology Conference (PCITC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Power, Communication and Information Technology Conference (PCITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCITC.2015.7438157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Power, Communication and Information Technology Conference (PCITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCITC.2015.7438157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

准确检测危及生命的心脏疾病是监测患者健康的重要任务之一。本文提出了一种利用多导联心电图(MECG)检测和分类心脏疾病的新方法。利用奇异值分解(SVD)将MECG数据矩阵转化为两个酉矩阵(特征矩阵)和一个对角矩阵。根据临床重要性,从特征基质中选择前几个原子。将模板MECG和分析MECG的统一矩阵之间的均方根误差(RMSE)作为诊断特征误差(DEE)特征。将分析的MECG和DEE特征奇异值组合作为最小二乘支持向量机(LSSVM)分类器的输入。LSSVM检测心脏疾病,如心肌梗死和肥厚。采用径向基函数(RBF)核和5重交叉验证方案的LSSVM分类器平均准确率为95.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of cardiac ailments from multilead ECG using diagnostic eigen error features
Accurate detection of life-threatening cardiac ailments is one of the important task in monitoring patient's health. In this paper, a new method for detection and classification of cardiac ailments from multilead electrocardiogram (MECG) is presented. The singular value decomposition (SVD) is used to convert the MECG data matrix into two unitary matrices (eigen matrices) and one diagonal matrix. According to clinical importance, first few atoms from the eigen matrices are selected. The root mean square error (RMSE) between the unitary matrices of both template MECG and analyzed MECG are used as diagnostic eigen error (DEE) features. The combination of singular values of analyzed MECG and DEE features are used as input to the least square support vector machine (LSSVM) classifier. The LSSVM detect the cardiac ailments such as myocardial infarction and hypertrophy. An average accuracy of 95.07% is found using LSSVM classifier with radial basis function (RBF) kernel and 5-fold cross-validation scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信