整合相关感官数据

Albert C. S. Chung, Helen C. Shen
{"title":"整合相关感官数据","authors":"Albert C. S. Chung, Helen C. Shen","doi":"10.1109/ROBOT.1998.680994","DOIUrl":null,"url":null,"abstract":"In sensory data fusion and integration consideration, sensor independence is a common assumption. We demonstrate the impact of including dependent information in the sensory data combination process. The team consensus approach based on information entropy can improve the measurement accuracy remarkably. The major benefits of the approach are: (a) the simple linear combination of the weighted initial local estimates for each sensor; and (b) the low order bivariate likelihood functions which can be represented easily. A comparison of the team consensus approach with the Bayesian approach is presented.","PeriodicalId":272503,"journal":{"name":"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrating dependent sensory data\",\"authors\":\"Albert C. S. Chung, Helen C. Shen\",\"doi\":\"10.1109/ROBOT.1998.680994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In sensory data fusion and integration consideration, sensor independence is a common assumption. We demonstrate the impact of including dependent information in the sensory data combination process. The team consensus approach based on information entropy can improve the measurement accuracy remarkably. The major benefits of the approach are: (a) the simple linear combination of the weighted initial local estimates for each sensor; and (b) the low order bivariate likelihood functions which can be represented easily. A comparison of the team consensus approach with the Bayesian approach is presented.\",\"PeriodicalId\":272503,\"journal\":{\"name\":\"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1998.680994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1998.680994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在传感器数据融合和集成的考虑中,传感器独立性是一个常见的假设。我们展示了在感官数据组合过程中包含依赖信息的影响。基于信息熵的团队共识方法可以显著提高测量精度。该方法的主要优点是:(a)每个传感器加权初始局部估计的简单线性组合;(b)易于表示的低阶二元似然函数。提出了团队共识方法与贝叶斯方法的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating dependent sensory data
In sensory data fusion and integration consideration, sensor independence is a common assumption. We demonstrate the impact of including dependent information in the sensory data combination process. The team consensus approach based on information entropy can improve the measurement accuracy remarkably. The major benefits of the approach are: (a) the simple linear combination of the weighted initial local estimates for each sensor; and (b) the low order bivariate likelihood functions which can be represented easily. A comparison of the team consensus approach with the Bayesian approach is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信