用于癌症检测和分类的高光谱成像

M. Nathan, A. S. Kabatznik, A. Mahmood
{"title":"用于癌症检测和分类的高光谱成像","authors":"M. Nathan, A. S. Kabatznik, A. Mahmood","doi":"10.1109/SAIBMEC.2018.8363180","DOIUrl":null,"url":null,"abstract":"The design and implementation of a classification system for hyperspectral images of cancer cell cultures is discussed. The ability to distinguish between different types of cancers is of particular importance in this study. This possibility allows for metastasised tumours to be identified, in the near infrared regions of 920 nm–2514 nm and thus the origin of a tumour. Using Principal Component Analysis (PCA) to find the features for Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), different cancer types could be distinguished with an overall accuracy of 87.4 % using an ANN solution whereas the SVM accuracy ranged from 73 %–88.9 % due to the One-Vs-One (OVO) multiclass technique implemented.","PeriodicalId":165912,"journal":{"name":"2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Hyperspectral imaging for cancer detection and classification\",\"authors\":\"M. Nathan, A. S. Kabatznik, A. Mahmood\",\"doi\":\"10.1109/SAIBMEC.2018.8363180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and implementation of a classification system for hyperspectral images of cancer cell cultures is discussed. The ability to distinguish between different types of cancers is of particular importance in this study. This possibility allows for metastasised tumours to be identified, in the near infrared regions of 920 nm–2514 nm and thus the origin of a tumour. Using Principal Component Analysis (PCA) to find the features for Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), different cancer types could be distinguished with an overall accuracy of 87.4 % using an ANN solution whereas the SVM accuracy ranged from 73 %–88.9 % due to the One-Vs-One (OVO) multiclass technique implemented.\",\"PeriodicalId\":165912,\"journal\":{\"name\":\"2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAIBMEC.2018.8363180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAIBMEC.2018.8363180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

讨论了肿瘤细胞培养物高光谱图像分类系统的设计与实现。在这项研究中,区分不同类型癌症的能力尤为重要。这种可能性允许在920 nm - 2514 nm的近红外区域识别转移性肿瘤,从而确定肿瘤的起源。使用主成分分析(PCA)来寻找人工神经网络(ANN)和支持向量机(SVM)的特征,使用ANN解决方案可以区分不同的癌症类型,总体准确率为87.4%,而支持向量机的准确率范围为73% - 88.9%,这是由于实现了One-Vs-One (OVO)多类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral imaging for cancer detection and classification
The design and implementation of a classification system for hyperspectral images of cancer cell cultures is discussed. The ability to distinguish between different types of cancers is of particular importance in this study. This possibility allows for metastasised tumours to be identified, in the near infrared regions of 920 nm–2514 nm and thus the origin of a tumour. Using Principal Component Analysis (PCA) to find the features for Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), different cancer types could be distinguished with an overall accuracy of 87.4 % using an ANN solution whereas the SVM accuracy ranged from 73 %–88.9 % due to the One-Vs-One (OVO) multiclass technique implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信