自动分类,以帮助诊断皮肤损伤使用深度卷积神经网络与转移学习模型

Derick Abreu Montagna, Wemerson Delcio Parreira, Anita Maria da Rocha Fernandes, Rudimar Luís Scaranto Dazzi
{"title":"自动分类,以帮助诊断皮肤损伤使用深度卷积神经网络与转移学习模型","authors":"Derick Abreu Montagna, Wemerson Delcio Parreira, Anita Maria da Rocha Fernandes, Rudimar Luís Scaranto Dazzi","doi":"10.14210/cotb.v13.p228-235","DOIUrl":null,"url":null,"abstract":"In Brazil, skin cancer has become the most frequent neoplasmamong patients. This type of cancer, if detected early, increases the chances of cure. However, with the lack of health professionals qual-ified to perform this procedure, for example, in distant regions large urban centers, difficulties in early diagnosis process are recurring. Thus, a possible solution to this problem is the development of mod-els that allow classification for the diagnosis skin based on Deep Learning. Therefore, this work presents a model that can contributeto the diagnosis of types of skin devices in the HAM10000 dataset.The proposed model achieved a balanced accuracy of 74.50% witha set.","PeriodicalId":375380,"journal":{"name":"Anais do XIII Computer on the Beach - COTB'22","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classificação Automática para Auxílio no Diagnóstico de Lesões de Pele Usando Deep Convolucional Neural Network com Modelos de Transfer Learning\",\"authors\":\"Derick Abreu Montagna, Wemerson Delcio Parreira, Anita Maria da Rocha Fernandes, Rudimar Luís Scaranto Dazzi\",\"doi\":\"10.14210/cotb.v13.p228-235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Brazil, skin cancer has become the most frequent neoplasmamong patients. This type of cancer, if detected early, increases the chances of cure. However, with the lack of health professionals qual-ified to perform this procedure, for example, in distant regions large urban centers, difficulties in early diagnosis process are recurring. Thus, a possible solution to this problem is the development of mod-els that allow classification for the diagnosis skin based on Deep Learning. Therefore, this work presents a model that can contributeto the diagnosis of types of skin devices in the HAM10000 dataset.The proposed model achieved a balanced accuracy of 74.50% witha set.\",\"PeriodicalId\":375380,\"journal\":{\"name\":\"Anais do XIII Computer on the Beach - COTB'22\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIII Computer on the Beach - COTB'22\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14210/cotb.v13.p228-235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIII Computer on the Beach - COTB'22","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14210/cotb.v13.p228-235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在巴西,皮肤癌已成为患者中最常见的肿瘤。这种类型的癌症,如果发现得早,治愈的机会就会增加。然而,由于缺乏有资格执行这一程序的卫生专业人员,例如在偏远地区、大城市中心,早期诊断过程中的困难反复出现。因此,这个问题的一个可能的解决方案是开发基于深度学习的诊断皮肤分类模型。因此,这项工作提出了一个模型,可以帮助诊断HAM10000数据集中的皮肤设备类型。该模型在一组数据下达到了74.50%的平衡精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classificação Automática para Auxílio no Diagnóstico de Lesões de Pele Usando Deep Convolucional Neural Network com Modelos de Transfer Learning
In Brazil, skin cancer has become the most frequent neoplasmamong patients. This type of cancer, if detected early, increases the chances of cure. However, with the lack of health professionals qual-ified to perform this procedure, for example, in distant regions large urban centers, difficulties in early diagnosis process are recurring. Thus, a possible solution to this problem is the development of mod-els that allow classification for the diagnosis skin based on Deep Learning. Therefore, this work presents a model that can contributeto the diagnosis of types of skin devices in the HAM10000 dataset.The proposed model achieved a balanced accuracy of 74.50% witha set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信