利用主题模型识别学生在线讨论的优缺点

V. Rolim, R. F. Mello, Maverick Andre Dionisio Ferreira, Anderson Pinheiro Cavalcanti, Rinaldo Lima
{"title":"利用主题模型识别学生在线讨论的优缺点","authors":"V. Rolim, R. F. Mello, Maverick Andre Dionisio Ferreira, Anderson Pinheiro Cavalcanti, Rinaldo Lima","doi":"10.1109/ICALT.2019.00020","DOIUrl":null,"url":null,"abstract":"This paper proposes a topic model-based approach to extract students' weaknesses and strength based on Latent Dirichlet Allocation (LDA). Our approach combines textual data extracted from online discussion forums written by students with external sources like Wikipedia. The results show the effectiveness of the proposed approach to create a user profile based on the topics covered by the students in discussion forums.","PeriodicalId":356549,"journal":{"name":"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identifying Students' Weaknesses and Strengths Based on Online Discussion using Topic Modeling\",\"authors\":\"V. Rolim, R. F. Mello, Maverick Andre Dionisio Ferreira, Anderson Pinheiro Cavalcanti, Rinaldo Lima\",\"doi\":\"10.1109/ICALT.2019.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a topic model-based approach to extract students' weaknesses and strength based on Latent Dirichlet Allocation (LDA). Our approach combines textual data extracted from online discussion forums written by students with external sources like Wikipedia. The results show the effectiveness of the proposed approach to create a user profile based on the topics covered by the students in discussion forums.\",\"PeriodicalId\":356549,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT.2019.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2019.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于潜狄利克雷分配(Latent Dirichlet Allocation, LDA)的基于主题模型的学生优缺点提取方法。我们的方法将从学生撰写的在线讨论论坛中提取的文本数据与维基百科等外部资源相结合。结果表明,基于学生在论坛中讨论的主题创建用户档案的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Students' Weaknesses and Strengths Based on Online Discussion using Topic Modeling
This paper proposes a topic model-based approach to extract students' weaknesses and strength based on Latent Dirichlet Allocation (LDA). Our approach combines textual data extracted from online discussion forums written by students with external sources like Wikipedia. The results show the effectiveness of the proposed approach to create a user profile based on the topics covered by the students in discussion forums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信