{"title":"低功耗DRAM锁存电压检测放大器的检测良率分析","authors":"S. Kim, Byungkyu Song, Tae Woo Oh, Seong-ook Jung","doi":"10.1109/PRIME.2018.8430359","DOIUrl":null,"url":null,"abstract":"Various types of sense amplifiers are widely used in memory products. In this paper, we have studied on the optimization of a voltage latched sense amplifier (VLSA) with 65nm CMOS process for low-power DRAM. In particular, we have classified sensing failure into the offset failure and the latch-delay failure, and have found that the latch-delay failure becomes even worse at low supply voltages below 1.0V. We also found that conventional NMOS-driven sensing operation was no longer effective on VLSA for low supply voltage, and investigated various methods to decrease the latch-delay failure probability.","PeriodicalId":384458,"journal":{"name":"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis on Sensing Yield of Voltage Latched Sense Amplifier for Low Power DRAM\",\"authors\":\"S. Kim, Byungkyu Song, Tae Woo Oh, Seong-ook Jung\",\"doi\":\"10.1109/PRIME.2018.8430359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various types of sense amplifiers are widely used in memory products. In this paper, we have studied on the optimization of a voltage latched sense amplifier (VLSA) with 65nm CMOS process for low-power DRAM. In particular, we have classified sensing failure into the offset failure and the latch-delay failure, and have found that the latch-delay failure becomes even worse at low supply voltages below 1.0V. We also found that conventional NMOS-driven sensing operation was no longer effective on VLSA for low supply voltage, and investigated various methods to decrease the latch-delay failure probability.\",\"PeriodicalId\":384458,\"journal\":{\"name\":\"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIME.2018.8430359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIME.2018.8430359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis on Sensing Yield of Voltage Latched Sense Amplifier for Low Power DRAM
Various types of sense amplifiers are widely used in memory products. In this paper, we have studied on the optimization of a voltage latched sense amplifier (VLSA) with 65nm CMOS process for low-power DRAM. In particular, we have classified sensing failure into the offset failure and the latch-delay failure, and have found that the latch-delay failure becomes even worse at low supply voltages below 1.0V. We also found that conventional NMOS-driven sensing operation was no longer effective on VLSA for low supply voltage, and investigated various methods to decrease the latch-delay failure probability.