一个1V,低功率,高增益,3 - 11ghz双平衡CMOS次谐波混频器

Rouhollah Feghhi, S. Naseh
{"title":"一个1V,低功率,高增益,3 - 11ghz双平衡CMOS次谐波混频器","authors":"Rouhollah Feghhi, S. Naseh","doi":"10.1109/ICICDT.2012.6232866","DOIUrl":null,"url":null,"abstract":"Design and simulation of a low power ultra wide band doubly balanced 2× sub-harmonic direct conversion mixer in a 0.18-μm CMOS technology is presented. The basic idea of the proposed mixer is adopted from the conventional Gilbert cell mixer, with two modifications incorporated. The first is that each of the switching quad transistors is replaced with a pair of transistors where their two drains, and also their two sources, are connected together (forming a “switching octet” instead of a “switching quad”). The signals driving the switching octet now has 4 different phases 0°, 90°, 180° and 270° (as opposed to the 2 phases 0° and 180° needed for the conventional Gilbert cell) which their waveform is in such a way that none of the octet transistors driven by different phases will be simultaneously on. These 4 driving phases are generated by a circuit block comprised of an 8-phase oscillator and 4 frequency doublers. The second modification is that each of the two transconductance transistors is replaced with an inductor. In the proposed mixer the RF signal is applied to the sources of the switching octet transistors. Because of this modification, stacking of transistors is avoided, allowing low voltage operation of the circuit. Simulation results performed using Hspice show The mixer draws 4.5 mA of dc current from a 1 V power supply, and achieves a bandwidth from 3 GHz to 11 GHz, a voltage conversion gain (CG) of 14~23dB, and 3rd intermodulation intercept points (IIP3) of -1.2 dBm.","PeriodicalId":131623,"journal":{"name":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 1V, low power, high-gain, 3 – 11 GHz double-balanced CMOS sub-harmonic mixer\",\"authors\":\"Rouhollah Feghhi, S. Naseh\",\"doi\":\"10.1109/ICICDT.2012.6232866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design and simulation of a low power ultra wide band doubly balanced 2× sub-harmonic direct conversion mixer in a 0.18-μm CMOS technology is presented. The basic idea of the proposed mixer is adopted from the conventional Gilbert cell mixer, with two modifications incorporated. The first is that each of the switching quad transistors is replaced with a pair of transistors where their two drains, and also their two sources, are connected together (forming a “switching octet” instead of a “switching quad”). The signals driving the switching octet now has 4 different phases 0°, 90°, 180° and 270° (as opposed to the 2 phases 0° and 180° needed for the conventional Gilbert cell) which their waveform is in such a way that none of the octet transistors driven by different phases will be simultaneously on. These 4 driving phases are generated by a circuit block comprised of an 8-phase oscillator and 4 frequency doublers. The second modification is that each of the two transconductance transistors is replaced with an inductor. In the proposed mixer the RF signal is applied to the sources of the switching octet transistors. Because of this modification, stacking of transistors is avoided, allowing low voltage operation of the circuit. Simulation results performed using Hspice show The mixer draws 4.5 mA of dc current from a 1 V power supply, and achieves a bandwidth from 3 GHz to 11 GHz, a voltage conversion gain (CG) of 14~23dB, and 3rd intermodulation intercept points (IIP3) of -1.2 dBm.\",\"PeriodicalId\":131623,\"journal\":{\"name\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT.2012.6232866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2012.6232866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于0.18 μm CMOS技术的低功耗超宽带双平衡2x次谐波直接转换混频器的设计与仿真。所提出的混合器的基本思想是采用传统的吉尔伯特槽混合器,并进行了两个修改。首先,每个开关四极晶体管都被一对晶体管取代,其中它们的两个漏极和两个源端连接在一起(形成“开关八极体”而不是“开关四极体”)。驱动开关八极体的信号现在有4个不同的相位0°,90°,180°和270°(与传统吉尔伯特电池所需的2相0°和180°相反),它们的波形是这样的,由不同相位驱动的八极体晶体管都不会同时开启。这4个驱动相位由一个8相振荡器和4个倍频器组成的电路块产生。第二个改进是将两个跨导晶体管中的每一个都用电感器代替。在所提出的混频器中,射频信号被应用于开关八极体晶体管的源。由于这种修改,避免了晶体管的堆叠,从而允许电路的低电压工作。Hspice仿真结果表明,该混频器从1 V电源中吸收4.5 mA直流电流,带宽为3 GHz ~ 11 GHz,电压转换增益(CG)为14~23dB,第三互调截获点(IIP3)为-1.2 dBm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1V, low power, high-gain, 3 – 11 GHz double-balanced CMOS sub-harmonic mixer
Design and simulation of a low power ultra wide band doubly balanced 2× sub-harmonic direct conversion mixer in a 0.18-μm CMOS technology is presented. The basic idea of the proposed mixer is adopted from the conventional Gilbert cell mixer, with two modifications incorporated. The first is that each of the switching quad transistors is replaced with a pair of transistors where their two drains, and also their two sources, are connected together (forming a “switching octet” instead of a “switching quad”). The signals driving the switching octet now has 4 different phases 0°, 90°, 180° and 270° (as opposed to the 2 phases 0° and 180° needed for the conventional Gilbert cell) which their waveform is in such a way that none of the octet transistors driven by different phases will be simultaneously on. These 4 driving phases are generated by a circuit block comprised of an 8-phase oscillator and 4 frequency doublers. The second modification is that each of the two transconductance transistors is replaced with an inductor. In the proposed mixer the RF signal is applied to the sources of the switching octet transistors. Because of this modification, stacking of transistors is avoided, allowing low voltage operation of the circuit. Simulation results performed using Hspice show The mixer draws 4.5 mA of dc current from a 1 V power supply, and achieves a bandwidth from 3 GHz to 11 GHz, a voltage conversion gain (CG) of 14~23dB, and 3rd intermodulation intercept points (IIP3) of -1.2 dBm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信