基于粒子群算法的直流电机驱动系统参数辨识

Ishaq Hafez, R. Dhaouadi
{"title":"基于粒子群算法的直流电机驱动系统参数辨识","authors":"Ishaq Hafez, R. Dhaouadi","doi":"10.1109/ICEET53442.2021.9659664","DOIUrl":null,"url":null,"abstract":"Accurate parameter estimation is of increasing importance in system modeling and control of highperformance motor drive systems. The inaccurate calculation or assumption of the system modal parameters may cause instability and/or bias control performance. This work presents the mathematical modeling, simulation, and experimental study to estimate the mechanical parameters of a two-mass-model system in DC motor drives using Artificial Swarm Intelligence. The electrical parameters such as resistance and inductance are usually provided by the DC motor manufacturer. However, the mechanical parameters such as the moment of inertia, and viscous friction will vary when the motor is connected to a mechanical load for a given application. Computer modeling and parameter estimation of the system were carried out using MATLAB/Simulink software. The parameters estimation of the mechanical side of a DC Motor drive system will be converted into an optimization problem using an objective function. The standard PSO algorithm is compared to the proposed modified PSO algorithms in the literature.","PeriodicalId":207913,"journal":{"name":"2021 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parameter Identification of DC Motor Drive Systems using Particle Swarm Optimization\",\"authors\":\"Ishaq Hafez, R. Dhaouadi\",\"doi\":\"10.1109/ICEET53442.2021.9659664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate parameter estimation is of increasing importance in system modeling and control of highperformance motor drive systems. The inaccurate calculation or assumption of the system modal parameters may cause instability and/or bias control performance. This work presents the mathematical modeling, simulation, and experimental study to estimate the mechanical parameters of a two-mass-model system in DC motor drives using Artificial Swarm Intelligence. The electrical parameters such as resistance and inductance are usually provided by the DC motor manufacturer. However, the mechanical parameters such as the moment of inertia, and viscous friction will vary when the motor is connected to a mechanical load for a given application. Computer modeling and parameter estimation of the system were carried out using MATLAB/Simulink software. The parameters estimation of the mechanical side of a DC Motor drive system will be converted into an optimization problem using an objective function. The standard PSO algorithm is compared to the proposed modified PSO algorithms in the literature.\",\"PeriodicalId\":207913,\"journal\":{\"name\":\"2021 International Conference on Engineering and Emerging Technologies (ICEET)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Engineering and Emerging Technologies (ICEET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEET53442.2021.9659664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET53442.2021.9659664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在高性能电机驱动系统的建模和控制中,精确的参数估计变得越来越重要。系统模态参数的不准确计算或假设可能导致不稳定和/或偏置控制性能。这项工作提出了数学建模、仿真和实验研究,以估计直流电机驱动中使用人工群智能的双质量模型系统的机械参数。电阻、电感等电气参数通常由直流电机制造商提供。然而,机械参数,如转动惯量和粘性摩擦,将改变当电机连接到机械负载的给定应用程序。利用MATLAB/Simulink软件对系统进行了计算机建模和参数估计。将直流电动机驱动系统的机械侧参数估计转化为目标函数优化问题。将标准粒子群算法与文献中提出的改进粒子群算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Identification of DC Motor Drive Systems using Particle Swarm Optimization
Accurate parameter estimation is of increasing importance in system modeling and control of highperformance motor drive systems. The inaccurate calculation or assumption of the system modal parameters may cause instability and/or bias control performance. This work presents the mathematical modeling, simulation, and experimental study to estimate the mechanical parameters of a two-mass-model system in DC motor drives using Artificial Swarm Intelligence. The electrical parameters such as resistance and inductance are usually provided by the DC motor manufacturer. However, the mechanical parameters such as the moment of inertia, and viscous friction will vary when the motor is connected to a mechanical load for a given application. Computer modeling and parameter estimation of the system were carried out using MATLAB/Simulink software. The parameters estimation of the mechanical side of a DC Motor drive system will be converted into an optimization problem using an objective function. The standard PSO algorithm is compared to the proposed modified PSO algorithms in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信