一种基于脑电图的人类意图识别的超低功率光子加速器

Qian Lou, Wenyang Liu, Weichen Liu, Feng Guo, Lei Jiang
{"title":"一种基于脑电图的人类意图识别的超低功率光子加速器","authors":"Qian Lou, Wenyang Liu, Weichen Liu, Feng Guo, Lei Jiang","doi":"10.1109/ASP-DAC47756.2020.9045333","DOIUrl":null,"url":null,"abstract":"A scalp-recording electroencephalography (EEG)-based brain-computer interface (BCI) system can greatly improve the quality of life for people who suffer from motor disabilities. Deep neural networks consisting of multiple convolutional, LSTM and fully-connected layers are created to decode EEG signals to maximize the human intention recognition accuracy. However, prior FPGA, ASIC, ReRAM and photonic accelerators cannot maintain sufficient battery lifetime when processing realtime intention recognition. In this paper, we propose an ultra-low-power photonic accelerator, MindReading, for human intention recognition by only low bit-width addition and shift operations. Compared to prior neural network accelerators, to maintain the real-time processing throughput, MindReading reduces the power consumption by 62.7% and improves the throughput per Watt by 168%.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MindReading: An Ultra-Low-Power Photonic Accelerator for EEG-based Human Intention Recognition\",\"authors\":\"Qian Lou, Wenyang Liu, Weichen Liu, Feng Guo, Lei Jiang\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scalp-recording electroencephalography (EEG)-based brain-computer interface (BCI) system can greatly improve the quality of life for people who suffer from motor disabilities. Deep neural networks consisting of multiple convolutional, LSTM and fully-connected layers are created to decode EEG signals to maximize the human intention recognition accuracy. However, prior FPGA, ASIC, ReRAM and photonic accelerators cannot maintain sufficient battery lifetime when processing realtime intention recognition. In this paper, we propose an ultra-low-power photonic accelerator, MindReading, for human intention recognition by only low bit-width addition and shift operations. Compared to prior neural network accelerators, to maintain the real-time processing throughput, MindReading reduces the power consumption by 62.7% and improves the throughput per Watt by 168%.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

一种基于脑电图(EEG)的脑机接口(BCI)系统可以极大地改善运动障碍患者的生活质量。构建由多个卷积层、LSTM层和全连接层组成的深度神经网络,对脑电信号进行解码,最大限度地提高人类意图识别的准确率。然而,现有的FPGA、ASIC、ReRAM和光子加速器在处理实时意图识别时无法保持足够的电池寿命。在本文中,我们提出了一种超低功率光子加速器,MindReading,用于人类意图识别,仅通过低位宽加法和移位操作。与之前的神经网络加速器相比,为了保持实时处理吞吐量,MindReading将功耗降低了62.7%,每瓦特吞吐量提高了168%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MindReading: An Ultra-Low-Power Photonic Accelerator for EEG-based Human Intention Recognition
A scalp-recording electroencephalography (EEG)-based brain-computer interface (BCI) system can greatly improve the quality of life for people who suffer from motor disabilities. Deep neural networks consisting of multiple convolutional, LSTM and fully-connected layers are created to decode EEG signals to maximize the human intention recognition accuracy. However, prior FPGA, ASIC, ReRAM and photonic accelerators cannot maintain sufficient battery lifetime when processing realtime intention recognition. In this paper, we propose an ultra-low-power photonic accelerator, MindReading, for human intention recognition by only low bit-width addition and shift operations. Compared to prior neural network accelerators, to maintain the real-time processing throughput, MindReading reduces the power consumption by 62.7% and improves the throughput per Watt by 168%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信