以字符串为键的自平衡二叉搜索树的量子版本及其应用

K. Khadiev, Syumbel Enikeeva
{"title":"以字符串为键的自平衡二叉搜索树的量子版本及其应用","authors":"K. Khadiev, Syumbel Enikeeva","doi":"10.1117/12.2624619","DOIUrl":null,"url":null,"abstract":"In this paper, we present the data structure that implements the Self-Balanced Binary Search Tree with strings as keys and quantum comparing procedure. We cannot use the standard Self-Balanced Binary Search because of an error probability for the quantum comparing procedure. We can solve the issue using the standard success probability boosting technique. The presented data structure is more effective (in terms of running time) than using boosting technique. We apply the data structure for the Most Frequently String problem. So, we obtain a quantum algorithm for the problem that is faster than the existing quantum algorithm, and the best classical algorithm in the case of a significant part of the input strings (we mean O(n)) has a length that is at least ω((log n)2). Here n means the number of strings in a collection.","PeriodicalId":388511,"journal":{"name":"International Conference on Micro- and Nano-Electronics","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantum version of self-balanced binary search tree with strings as keys and applications\",\"authors\":\"K. Khadiev, Syumbel Enikeeva\",\"doi\":\"10.1117/12.2624619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the data structure that implements the Self-Balanced Binary Search Tree with strings as keys and quantum comparing procedure. We cannot use the standard Self-Balanced Binary Search because of an error probability for the quantum comparing procedure. We can solve the issue using the standard success probability boosting technique. The presented data structure is more effective (in terms of running time) than using boosting technique. We apply the data structure for the Most Frequently String problem. So, we obtain a quantum algorithm for the problem that is faster than the existing quantum algorithm, and the best classical algorithm in the case of a significant part of the input strings (we mean O(n)) has a length that is at least ω((log n)2). Here n means the number of strings in a collection.\",\"PeriodicalId\":388511,\"journal\":{\"name\":\"International Conference on Micro- and Nano-Electronics\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Micro- and Nano-Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2624619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Micro- and Nano-Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2624619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了实现以字符串为键的自平衡二叉搜索树的数据结构和量子比较过程。我们不能使用标准的自平衡二叉搜索,因为量子比较过程有一个错误概率。我们可以使用标准的成功概率提升技术来解决这个问题。所提出的数据结构比使用增强技术更有效(就运行时间而言)。我们将这种数据结构应用于最频繁字符串问题。因此,我们得到了一个比现有量子算法更快的量子算法,并且在输入字符串的显著部分(我们的意思是O(n))的长度至少为ω((log n)2)的情况下,最好的经典算法。这里n表示集合中字符串的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum version of self-balanced binary search tree with strings as keys and applications
In this paper, we present the data structure that implements the Self-Balanced Binary Search Tree with strings as keys and quantum comparing procedure. We cannot use the standard Self-Balanced Binary Search because of an error probability for the quantum comparing procedure. We can solve the issue using the standard success probability boosting technique. The presented data structure is more effective (in terms of running time) than using boosting technique. We apply the data structure for the Most Frequently String problem. So, we obtain a quantum algorithm for the problem that is faster than the existing quantum algorithm, and the best classical algorithm in the case of a significant part of the input strings (we mean O(n)) has a length that is at least ω((log n)2). Here n means the number of strings in a collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信