大量电动汽车对电力系统效率和可靠性的影响

R. Giglioli, M. Giuntoli, G. Lutzemberger, D. Poli
{"title":"大量电动汽车对电力系统效率和可靠性的影响","authors":"R. Giglioli, M. Giuntoli, G. Lutzemberger, D. Poli","doi":"10.1109/IEVC.2014.7056090","DOIUrl":null,"url":null,"abstract":"The influence of electric vehicles on the power system has been traditionally analyzed in terms of recharge infrastructures and adequacy of the electric distribution network. Nevertheless, the additional power demand due to the recharge of a large number of batteries could significantly modify the national load profile, hence the dispatching of production plants. The recent literature approaches this issue using deterministic methods or simplified probabilistic considerations. In this framework, the present paper proposes the use of a Monte Carlo probabilistic approach to assess the impact of large fleet of EVs on the efficiency and reliability of the generating park of an electric power system. A Sequential Monte Carlo simulator has been developed and applied to the hourly operation of the Italian power system. Several 2020 scenarios, diversified in terms of number of vehicles and recharge timing, have been assumed for the future fleet of EVs. The study was mainly realized within the PRIME project, funded by the Italian Ministry for the Environment.","PeriodicalId":223794,"journal":{"name":"2014 IEEE International Electric Vehicle Conference (IEVC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Impact of a large fleet of EVs on the efficiency and reliability of an electric power system\",\"authors\":\"R. Giglioli, M. Giuntoli, G. Lutzemberger, D. Poli\",\"doi\":\"10.1109/IEVC.2014.7056090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of electric vehicles on the power system has been traditionally analyzed in terms of recharge infrastructures and adequacy of the electric distribution network. Nevertheless, the additional power demand due to the recharge of a large number of batteries could significantly modify the national load profile, hence the dispatching of production plants. The recent literature approaches this issue using deterministic methods or simplified probabilistic considerations. In this framework, the present paper proposes the use of a Monte Carlo probabilistic approach to assess the impact of large fleet of EVs on the efficiency and reliability of the generating park of an electric power system. A Sequential Monte Carlo simulator has been developed and applied to the hourly operation of the Italian power system. Several 2020 scenarios, diversified in terms of number of vehicles and recharge timing, have been assumed for the future fleet of EVs. The study was mainly realized within the PRIME project, funded by the Italian Ministry for the Environment.\",\"PeriodicalId\":223794,\"journal\":{\"name\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEVC.2014.7056090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electric Vehicle Conference (IEVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2014.7056090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

传统上,电动汽车对电力系统的影响主要从充电基础设施和配电网的充分性两个方面进行分析。然而,由于大量电池的充电而产生的额外电力需求可能会显著改变国家负荷概况,因此需要调度生产工厂。最近的文献使用确定性方法或简化的概率考虑来处理这个问题。在此框架下,本文建议使用蒙特卡洛概率方法来评估大型电动汽车车队对电力系统发电园区效率和可靠性的影响。开发了时序蒙特卡罗仿真器,并将其应用于意大利电力系统的小时运行。对于2020年的未来电动汽车车队,在车辆数量和充电时间方面,假设了几种不同的情景。这项研究主要是在意大利环境部资助的PRIME项目中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of a large fleet of EVs on the efficiency and reliability of an electric power system
The influence of electric vehicles on the power system has been traditionally analyzed in terms of recharge infrastructures and adequacy of the electric distribution network. Nevertheless, the additional power demand due to the recharge of a large number of batteries could significantly modify the national load profile, hence the dispatching of production plants. The recent literature approaches this issue using deterministic methods or simplified probabilistic considerations. In this framework, the present paper proposes the use of a Monte Carlo probabilistic approach to assess the impact of large fleet of EVs on the efficiency and reliability of the generating park of an electric power system. A Sequential Monte Carlo simulator has been developed and applied to the hourly operation of the Italian power system. Several 2020 scenarios, diversified in terms of number of vehicles and recharge timing, have been assumed for the future fleet of EVs. The study was mainly realized within the PRIME project, funded by the Italian Ministry for the Environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信