{"title":"参数自由曲线轮廓精度的提高——一种基于模糊逻辑的扰动补偿方法","authors":"Ke-Han Su, M. Cheng, Yu-Chen Chang","doi":"10.1109/ICMECH.2013.6519132","DOIUrl":null,"url":null,"abstract":"In high-precision manufacturing, the paramount issue is to diminish contour error regarding multi-axis contour following tasks. In particular, machining problems such as large contouring errors will likely occur in a complex shape machining task due to the inherent friction force and/or external disturbances. Among the possible solutions to dealing with this difficulty, the Cross-Coupled Controller (CCC) is arguably the most commonly used approach for contouring accuracy improvement in multi-axis contouring control systems. Therefore, to attain satisfactory contouring accuracy, this paper exploits the CCC approach for control of free-form contour following tasks in biaxial motion control systems. Additionally, a Fuzzy Logic-based Disturbance Compensator (FLDC) is presented to enhance tracking performance as well as contouring accuracy. Moreover, an integrated motion control structure consisting of a modified version of CCC and two proposed FLDCs is further developed in this paper to improve contouring performance. Several experiments on free-form contour following tasks have been performed on an X-Y table driven by two linear motors. Experimental results validate the feasibility of the proposed approach.","PeriodicalId":448152,"journal":{"name":"2013 IEEE International Conference on Mechatronics (ICM)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Contouring accuracy improvement of parametric free-form curves — A Fuzzy Logic-based Disturbance Compensation approach\",\"authors\":\"Ke-Han Su, M. Cheng, Yu-Chen Chang\",\"doi\":\"10.1109/ICMECH.2013.6519132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high-precision manufacturing, the paramount issue is to diminish contour error regarding multi-axis contour following tasks. In particular, machining problems such as large contouring errors will likely occur in a complex shape machining task due to the inherent friction force and/or external disturbances. Among the possible solutions to dealing with this difficulty, the Cross-Coupled Controller (CCC) is arguably the most commonly used approach for contouring accuracy improvement in multi-axis contouring control systems. Therefore, to attain satisfactory contouring accuracy, this paper exploits the CCC approach for control of free-form contour following tasks in biaxial motion control systems. Additionally, a Fuzzy Logic-based Disturbance Compensator (FLDC) is presented to enhance tracking performance as well as contouring accuracy. Moreover, an integrated motion control structure consisting of a modified version of CCC and two proposed FLDCs is further developed in this paper to improve contouring performance. Several experiments on free-form contour following tasks have been performed on an X-Y table driven by two linear motors. Experimental results validate the feasibility of the proposed approach.\",\"PeriodicalId\":448152,\"journal\":{\"name\":\"2013 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECH.2013.6519132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2013.6519132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contouring accuracy improvement of parametric free-form curves — A Fuzzy Logic-based Disturbance Compensation approach
In high-precision manufacturing, the paramount issue is to diminish contour error regarding multi-axis contour following tasks. In particular, machining problems such as large contouring errors will likely occur in a complex shape machining task due to the inherent friction force and/or external disturbances. Among the possible solutions to dealing with this difficulty, the Cross-Coupled Controller (CCC) is arguably the most commonly used approach for contouring accuracy improvement in multi-axis contouring control systems. Therefore, to attain satisfactory contouring accuracy, this paper exploits the CCC approach for control of free-form contour following tasks in biaxial motion control systems. Additionally, a Fuzzy Logic-based Disturbance Compensator (FLDC) is presented to enhance tracking performance as well as contouring accuracy. Moreover, an integrated motion control structure consisting of a modified version of CCC and two proposed FLDCs is further developed in this paper to improve contouring performance. Several experiments on free-form contour following tasks have been performed on an X-Y table driven by two linear motors. Experimental results validate the feasibility of the proposed approach.