针对炼油厂大数据问题的实时数据协调解决方案

Mustafa Bahr, Burak Aydoğan, Mehmet Aydin, A. Khodabakhsh, I. An, A. Ercan
{"title":"针对炼油厂大数据问题的实时数据协调解决方案","authors":"Mustafa Bahr, Burak Aydoğan, Mehmet Aydin, A. Khodabakhsh, I. An, A. Ercan","doi":"10.1109/SIU.2014.6830553","DOIUrl":null,"url":null,"abstract":"Refineries are giant industrial facilities where tons of crude oil is turned into fuel oil and other chemical by-products through different chemical processes every day. In this article, we discuss big data problems specifically obserbed in sensor-heavy oil refineries (volume, velocity, variety, veracity) and suggest real-time data validation and reconciliation (DVR) solutions fit for these environments.","PeriodicalId":384835,"journal":{"name":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-time data reconciliation solutions for big data problems observed in oil refineries\",\"authors\":\"Mustafa Bahr, Burak Aydoğan, Mehmet Aydin, A. Khodabakhsh, I. An, A. Ercan\",\"doi\":\"10.1109/SIU.2014.6830553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Refineries are giant industrial facilities where tons of crude oil is turned into fuel oil and other chemical by-products through different chemical processes every day. In this article, we discuss big data problems specifically obserbed in sensor-heavy oil refineries (volume, velocity, variety, veracity) and suggest real-time data validation and reconciliation (DVR) solutions fit for these environments.\",\"PeriodicalId\":384835,\"journal\":{\"name\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2014.6830553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2014.6830553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

炼油厂是大型工业设施,每天有数吨原油通过不同的化学过程转化为燃料油和其他化学副产品。在本文中,我们讨论了在传感器重油炼油厂中观察到的大数据问题(体积、速度、种类、准确性),并提出了适合这些环境的实时数据验证和协调(DVR)解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time data reconciliation solutions for big data problems observed in oil refineries
Refineries are giant industrial facilities where tons of crude oil is turned into fuel oil and other chemical by-products through different chemical processes every day. In this article, we discuss big data problems specifically obserbed in sensor-heavy oil refineries (volume, velocity, variety, veracity) and suggest real-time data validation and reconciliation (DVR) solutions fit for these environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信