H. Ng, W. Ahmad, M. Kucharski, Jeng-Hau Lu, D. Kissinger
{"title":"带有片上折叠偶极子天线的高度小型化2通道毫米波雷达传感器","authors":"H. Ng, W. Ahmad, M. Kucharski, Jeng-Hau Lu, D. Kissinger","doi":"10.1109/RFIC.2017.7969094","DOIUrl":null,"url":null,"abstract":"This paper describes a miniaturized 2-channel system-on-chip radar sensor in a SiGe BiCMOS technology. It includes on-chip folded dipole antennas that utilize a localized backside etching technique with a novel selective etching approach that is able to improve the radiation efficiency and the mechanical stability of the chip. The transceiver is equipped with a 30-GHz VCO that is complemented with a frequency quadrupler to generate a 120-GHz carrier signal. The 2 transmit channels can be combined to increase the effective isotropic radiated power by 6 dB and to implement a SIMO radar. The transceiver also includes BPSK modulators as well as I/Q receivers and can be utilized to build a flexible MIMO radar using frequency-modulated continuous-wave with time and delta-sigma modulator-based frequency division multiplexing as well as pseudo-random noise radar techniques. Radar measurement using digital-beamforming method with 10-GHz modulation bandwidth was performed to show the applicabilty of the proposed system.","PeriodicalId":349922,"journal":{"name":"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Highly-miniaturized 2-channel mm-wave radar sensor with on-chip folded dipole antennas\",\"authors\":\"H. Ng, W. Ahmad, M. Kucharski, Jeng-Hau Lu, D. Kissinger\",\"doi\":\"10.1109/RFIC.2017.7969094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a miniaturized 2-channel system-on-chip radar sensor in a SiGe BiCMOS technology. It includes on-chip folded dipole antennas that utilize a localized backside etching technique with a novel selective etching approach that is able to improve the radiation efficiency and the mechanical stability of the chip. The transceiver is equipped with a 30-GHz VCO that is complemented with a frequency quadrupler to generate a 120-GHz carrier signal. The 2 transmit channels can be combined to increase the effective isotropic radiated power by 6 dB and to implement a SIMO radar. The transceiver also includes BPSK modulators as well as I/Q receivers and can be utilized to build a flexible MIMO radar using frequency-modulated continuous-wave with time and delta-sigma modulator-based frequency division multiplexing as well as pseudo-random noise radar techniques. Radar measurement using digital-beamforming method with 10-GHz modulation bandwidth was performed to show the applicabilty of the proposed system.\",\"PeriodicalId\":349922,\"journal\":{\"name\":\"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2017.7969094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2017.7969094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly-miniaturized 2-channel mm-wave radar sensor with on-chip folded dipole antennas
This paper describes a miniaturized 2-channel system-on-chip radar sensor in a SiGe BiCMOS technology. It includes on-chip folded dipole antennas that utilize a localized backside etching technique with a novel selective etching approach that is able to improve the radiation efficiency and the mechanical stability of the chip. The transceiver is equipped with a 30-GHz VCO that is complemented with a frequency quadrupler to generate a 120-GHz carrier signal. The 2 transmit channels can be combined to increase the effective isotropic radiated power by 6 dB and to implement a SIMO radar. The transceiver also includes BPSK modulators as well as I/Q receivers and can be utilized to build a flexible MIMO radar using frequency-modulated continuous-wave with time and delta-sigma modulator-based frequency division multiplexing as well as pseudo-random noise radar techniques. Radar measurement using digital-beamforming method with 10-GHz modulation bandwidth was performed to show the applicabilty of the proposed system.