在现实世界秘密共享MPC框架中执行理想世界泄漏边界

J. Almeida, M. Barbosa, G. Barthe, Hugo Pacheco, Vitor Pereira, Bernardo Portela
{"title":"在现实世界秘密共享MPC框架中执行理想世界泄漏边界","authors":"J. Almeida, M. Barbosa, G. Barthe, Hugo Pacheco, Vitor Pereira, Bernardo Portela","doi":"10.1109/CSF.2018.00017","DOIUrl":null,"url":null,"abstract":"We give a language-based security treatment of domain-specific languages and compilers for secure multi-party computation, a cryptographic paradigm that enables collaborative computation over encrypted data. Computations are specified in a core imperative language, as if they were intended to be executed by a trusted-third party, and formally verified against an information-flow policy modelling (an upper bound to) their leakage. This allows non-experts to assess the impact of performance-driven authorized disclosure of intermediate values. Specifications are then compiled to multi-party protocols. We formalize protocol security using (distributed) probabilistic information-flow and prove security-preserving compilation: protocols only leak what is allowed by the source policy. The proof exploits a natural but previously missing correspondence between simulation-based cryptographic proofs and (composable) probabilistic non-interference. Finally, we extend our framework to justify leakage cancelling, a domain-specific optimization that allows to first write an efficient specification that fails to meet the allowed leakage upper-bound, and then apply a probabilistic pre-processing that brings leakage to the acceptable range.","PeriodicalId":417032,"journal":{"name":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Enforcing Ideal-World Leakage Bounds in Real-World Secret Sharing MPC Frameworks\",\"authors\":\"J. Almeida, M. Barbosa, G. Barthe, Hugo Pacheco, Vitor Pereira, Bernardo Portela\",\"doi\":\"10.1109/CSF.2018.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a language-based security treatment of domain-specific languages and compilers for secure multi-party computation, a cryptographic paradigm that enables collaborative computation over encrypted data. Computations are specified in a core imperative language, as if they were intended to be executed by a trusted-third party, and formally verified against an information-flow policy modelling (an upper bound to) their leakage. This allows non-experts to assess the impact of performance-driven authorized disclosure of intermediate values. Specifications are then compiled to multi-party protocols. We formalize protocol security using (distributed) probabilistic information-flow and prove security-preserving compilation: protocols only leak what is allowed by the source policy. The proof exploits a natural but previously missing correspondence between simulation-based cryptographic proofs and (composable) probabilistic non-interference. Finally, we extend our framework to justify leakage cancelling, a domain-specific optimization that allows to first write an efficient specification that fails to meet the allowed leakage upper-bound, and then apply a probabilistic pre-processing that brings leakage to the acceptable range.\",\"PeriodicalId\":417032,\"journal\":{\"name\":\"2018 IEEE 31st Computer Security Foundations Symposium (CSF)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 31st Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2018.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们为安全多方计算提供了基于语言的领域特定语言和编译器的安全处理,这是一种加密范式,可以在加密数据上进行协作计算。计算是用核心命令式语言指定的,就好像它们打算由可信的第三方执行一样,并根据信息流策略建模(其泄漏的上限)进行正式验证。这允许非专家评估绩效驱动的授权披露中间值的影响。然后将规范编译为多方协议。我们使用(分布式)概率信息流形式化协议安全性,并证明安全保护编译:协议只泄露源策略允许的内容。该证明利用了基于模拟的密码证明和(可组合的)概率不干扰之间的自然但以前缺失的对应关系。最后,我们扩展我们的框架来证明泄漏取消,这是一个特定于领域的优化,允许首先编写一个不能满足允许的泄漏上限的有效规范,然后应用概率预处理,将泄漏带到可接受的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enforcing Ideal-World Leakage Bounds in Real-World Secret Sharing MPC Frameworks
We give a language-based security treatment of domain-specific languages and compilers for secure multi-party computation, a cryptographic paradigm that enables collaborative computation over encrypted data. Computations are specified in a core imperative language, as if they were intended to be executed by a trusted-third party, and formally verified against an information-flow policy modelling (an upper bound to) their leakage. This allows non-experts to assess the impact of performance-driven authorized disclosure of intermediate values. Specifications are then compiled to multi-party protocols. We formalize protocol security using (distributed) probabilistic information-flow and prove security-preserving compilation: protocols only leak what is allowed by the source policy. The proof exploits a natural but previously missing correspondence between simulation-based cryptographic proofs and (composable) probabilistic non-interference. Finally, we extend our framework to justify leakage cancelling, a domain-specific optimization that allows to first write an efficient specification that fails to meet the allowed leakage upper-bound, and then apply a probabilistic pre-processing that brings leakage to the acceptable range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信