J. Almeida, M. Barbosa, G. Barthe, Hugo Pacheco, Vitor Pereira, Bernardo Portela
{"title":"在现实世界秘密共享MPC框架中执行理想世界泄漏边界","authors":"J. Almeida, M. Barbosa, G. Barthe, Hugo Pacheco, Vitor Pereira, Bernardo Portela","doi":"10.1109/CSF.2018.00017","DOIUrl":null,"url":null,"abstract":"We give a language-based security treatment of domain-specific languages and compilers for secure multi-party computation, a cryptographic paradigm that enables collaborative computation over encrypted data. Computations are specified in a core imperative language, as if they were intended to be executed by a trusted-third party, and formally verified against an information-flow policy modelling (an upper bound to) their leakage. This allows non-experts to assess the impact of performance-driven authorized disclosure of intermediate values. Specifications are then compiled to multi-party protocols. We formalize protocol security using (distributed) probabilistic information-flow and prove security-preserving compilation: protocols only leak what is allowed by the source policy. The proof exploits a natural but previously missing correspondence between simulation-based cryptographic proofs and (composable) probabilistic non-interference. Finally, we extend our framework to justify leakage cancelling, a domain-specific optimization that allows to first write an efficient specification that fails to meet the allowed leakage upper-bound, and then apply a probabilistic pre-processing that brings leakage to the acceptable range.","PeriodicalId":417032,"journal":{"name":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Enforcing Ideal-World Leakage Bounds in Real-World Secret Sharing MPC Frameworks\",\"authors\":\"J. Almeida, M. Barbosa, G. Barthe, Hugo Pacheco, Vitor Pereira, Bernardo Portela\",\"doi\":\"10.1109/CSF.2018.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a language-based security treatment of domain-specific languages and compilers for secure multi-party computation, a cryptographic paradigm that enables collaborative computation over encrypted data. Computations are specified in a core imperative language, as if they were intended to be executed by a trusted-third party, and formally verified against an information-flow policy modelling (an upper bound to) their leakage. This allows non-experts to assess the impact of performance-driven authorized disclosure of intermediate values. Specifications are then compiled to multi-party protocols. We formalize protocol security using (distributed) probabilistic information-flow and prove security-preserving compilation: protocols only leak what is allowed by the source policy. The proof exploits a natural but previously missing correspondence between simulation-based cryptographic proofs and (composable) probabilistic non-interference. Finally, we extend our framework to justify leakage cancelling, a domain-specific optimization that allows to first write an efficient specification that fails to meet the allowed leakage upper-bound, and then apply a probabilistic pre-processing that brings leakage to the acceptable range.\",\"PeriodicalId\":417032,\"journal\":{\"name\":\"2018 IEEE 31st Computer Security Foundations Symposium (CSF)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 31st Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2018.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enforcing Ideal-World Leakage Bounds in Real-World Secret Sharing MPC Frameworks
We give a language-based security treatment of domain-specific languages and compilers for secure multi-party computation, a cryptographic paradigm that enables collaborative computation over encrypted data. Computations are specified in a core imperative language, as if they were intended to be executed by a trusted-third party, and formally verified against an information-flow policy modelling (an upper bound to) their leakage. This allows non-experts to assess the impact of performance-driven authorized disclosure of intermediate values. Specifications are then compiled to multi-party protocols. We formalize protocol security using (distributed) probabilistic information-flow and prove security-preserving compilation: protocols only leak what is allowed by the source policy. The proof exploits a natural but previously missing correspondence between simulation-based cryptographic proofs and (composable) probabilistic non-interference. Finally, we extend our framework to justify leakage cancelling, a domain-specific optimization that allows to first write an efficient specification that fails to meet the allowed leakage upper-bound, and then apply a probabilistic pre-processing that brings leakage to the acceptable range.