{"title":"基于递归神经网络的人机姿态分层映射","authors":"Zainab Al-Qurashi, Brian D. Ziebart","doi":"10.1109/IRC.2020.00016","DOIUrl":null,"url":null,"abstract":"To perform many critical manipulation tasks successfully, human-robot mimicking systems should not only accurately copy the position of a human hand, but its orientation as well. Deep learning methods trained from pairs of corresponding human and robot poses offer one promising approach for constructing a human-robot mapping to accomplish this. However, ignoring the spatial and temporal structure of this mapping makes learning it less effective. We propose two different hierarchical architectures that leverage the structural and temporal human-robot mapping. We partially separate the robotic manipulator's end-effector position and orientation while considering the mutual coupling effects between them. This divides the main problem-making the robot match the human's hand position and mimic its orientation accurately along an unknown trajectory-into several sub-problems. We address these using different recurrent neural networks (RNNs) with Long-Short Term Memory (LSTM) that we combine and train hierarchically based on the coupling over the aspects of the robot that each controls. We evaluate our proposed architectures using a virtual reality system to track human table tennis motions and compare with single artificial neural network (ANN) and RNN models. We compare the benefits of using deep learning neural networks with and without our architectures and find smaller errors in position and orientation, along with increased flexibility in wrist movement are obtained by our proposed architectures.","PeriodicalId":232817,"journal":{"name":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recurrent Neural Networks for Hierarchically Mapping Human-Robot Poses\",\"authors\":\"Zainab Al-Qurashi, Brian D. Ziebart\",\"doi\":\"10.1109/IRC.2020.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To perform many critical manipulation tasks successfully, human-robot mimicking systems should not only accurately copy the position of a human hand, but its orientation as well. Deep learning methods trained from pairs of corresponding human and robot poses offer one promising approach for constructing a human-robot mapping to accomplish this. However, ignoring the spatial and temporal structure of this mapping makes learning it less effective. We propose two different hierarchical architectures that leverage the structural and temporal human-robot mapping. We partially separate the robotic manipulator's end-effector position and orientation while considering the mutual coupling effects between them. This divides the main problem-making the robot match the human's hand position and mimic its orientation accurately along an unknown trajectory-into several sub-problems. We address these using different recurrent neural networks (RNNs) with Long-Short Term Memory (LSTM) that we combine and train hierarchically based on the coupling over the aspects of the robot that each controls. We evaluate our proposed architectures using a virtual reality system to track human table tennis motions and compare with single artificial neural network (ANN) and RNN models. We compare the benefits of using deep learning neural networks with and without our architectures and find smaller errors in position and orientation, along with increased flexibility in wrist movement are obtained by our proposed architectures.\",\"PeriodicalId\":232817,\"journal\":{\"name\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2020.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recurrent Neural Networks for Hierarchically Mapping Human-Robot Poses
To perform many critical manipulation tasks successfully, human-robot mimicking systems should not only accurately copy the position of a human hand, but its orientation as well. Deep learning methods trained from pairs of corresponding human and robot poses offer one promising approach for constructing a human-robot mapping to accomplish this. However, ignoring the spatial and temporal structure of this mapping makes learning it less effective. We propose two different hierarchical architectures that leverage the structural and temporal human-robot mapping. We partially separate the robotic manipulator's end-effector position and orientation while considering the mutual coupling effects between them. This divides the main problem-making the robot match the human's hand position and mimic its orientation accurately along an unknown trajectory-into several sub-problems. We address these using different recurrent neural networks (RNNs) with Long-Short Term Memory (LSTM) that we combine and train hierarchically based on the coupling over the aspects of the robot that each controls. We evaluate our proposed architectures using a virtual reality system to track human table tennis motions and compare with single artificial neural network (ANN) and RNN models. We compare the benefits of using deep learning neural networks with and without our architectures and find smaller errors in position and orientation, along with increased flexibility in wrist movement are obtained by our proposed architectures.