开关系统可观测性的几何方法:在三单元DC/DC变换器中的应用

N. Gazzam, A. Benalia
{"title":"开关系统可观测性的几何方法:在三单元DC/DC变换器中的应用","authors":"N. Gazzam, A. Benalia","doi":"10.1109/ICASS.2018.8652009","DOIUrl":null,"url":null,"abstract":"This paper discusses the observability of switched linear systems using geometrical concepts and tools. A necessary and sufficient geometric condition for the observability is provided. An interesting application in power electronics, known as multicellular converter, is considered. The observability of three cells converter and super twisting sliding mode observer are developed. Simulation results confirm the analytical demonstrations and prove the effectiveness of the observer.","PeriodicalId":358814,"journal":{"name":"2018 International Conference on Applied Smart Systems (ICASS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Geometric Approach for the Observability of Switched Systems: Application to Three-Cells DC/DC Converter\",\"authors\":\"N. Gazzam, A. Benalia\",\"doi\":\"10.1109/ICASS.2018.8652009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the observability of switched linear systems using geometrical concepts and tools. A necessary and sufficient geometric condition for the observability is provided. An interesting application in power electronics, known as multicellular converter, is considered. The observability of three cells converter and super twisting sliding mode observer are developed. Simulation results confirm the analytical demonstrations and prove the effectiveness of the observer.\",\"PeriodicalId\":358814,\"journal\":{\"name\":\"2018 International Conference on Applied Smart Systems (ICASS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Applied Smart Systems (ICASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASS.2018.8652009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied Smart Systems (ICASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASS.2018.8652009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文用几何概念和工具讨论了切换线性系统的可观测性。给出了可观测性的一个充分必要几何条件。一个有趣的应用在电力电子,被称为多细胞转换器,考虑。研究了三单元变换器的可观测性和超扭滑模观测器。仿真结果验证了分析结果,验证了观测器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Approach for the Observability of Switched Systems: Application to Three-Cells DC/DC Converter
This paper discusses the observability of switched linear systems using geometrical concepts and tools. A necessary and sufficient geometric condition for the observability is provided. An interesting application in power electronics, known as multicellular converter, is considered. The observability of three cells converter and super twisting sliding mode observer are developed. Simulation results confirm the analytical demonstrations and prove the effectiveness of the observer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信