基于稀疏表示的物联网边缘僵尸网络攻击检测

Christos Tzagkarakis, N. Petroulakis, S. Ioannidis
{"title":"基于稀疏表示的物联网边缘僵尸网络攻击检测","authors":"Christos Tzagkarakis, N. Petroulakis, S. Ioannidis","doi":"10.1109/GIOTS.2019.8766388","DOIUrl":null,"url":null,"abstract":"Internet-of-Things (IoT) aims at interconnecting thousands or millions of smart objects/devices in a seamless way by sensing, processing and analyzing huge amount of data obtained from heterogeneous IoT devices. This rapid development of IoT-oriented infrastructures comes at the cost of increased security threats through IoT-based botnet attacks. In this work, we present an IoT botnet attack detection method based on a sparsity representation framework using a reconstruction error thresholding rule for identifying malicious network traffic at the IoT edge coming from compromised IoT devices. The botnet attack detection is performed based on small-sized benign IoT network traffic data, and thus we have no prior knowledge about malicious IoT traffic data. We present our results on a real IoT-based network dataset and show the efficacy of our proposed technique against a reconstruction error-based autoencoder approach.","PeriodicalId":149504,"journal":{"name":"2019 Global IoT Summit (GIoTS)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Botnet Attack Detection at the IoT Edge Based on Sparse Representation\",\"authors\":\"Christos Tzagkarakis, N. Petroulakis, S. Ioannidis\",\"doi\":\"10.1109/GIOTS.2019.8766388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet-of-Things (IoT) aims at interconnecting thousands or millions of smart objects/devices in a seamless way by sensing, processing and analyzing huge amount of data obtained from heterogeneous IoT devices. This rapid development of IoT-oriented infrastructures comes at the cost of increased security threats through IoT-based botnet attacks. In this work, we present an IoT botnet attack detection method based on a sparsity representation framework using a reconstruction error thresholding rule for identifying malicious network traffic at the IoT edge coming from compromised IoT devices. The botnet attack detection is performed based on small-sized benign IoT network traffic data, and thus we have no prior knowledge about malicious IoT traffic data. We present our results on a real IoT-based network dataset and show the efficacy of our proposed technique against a reconstruction error-based autoencoder approach.\",\"PeriodicalId\":149504,\"journal\":{\"name\":\"2019 Global IoT Summit (GIoTS)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Global IoT Summit (GIoTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GIOTS.2019.8766388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Global IoT Summit (GIoTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GIOTS.2019.8766388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

物联网(IoT)旨在通过感知、处理和分析从异构物联网设备获取的大量数据,以无缝方式连接数千或数百万智能对象/设备。面向物联网的基础设施的快速发展是以基于物联网的僵尸网络攻击带来的安全威胁增加为代价的。在这项工作中,我们提出了一种基于稀疏表示框架的物联网僵尸网络攻击检测方法,该方法使用重构错误阈值规则来识别来自受损物联网设备的物联网边缘的恶意网络流量。僵尸网络攻击检测是基于小规模的良性物联网网络流量数据进行的,因此我们对恶意物联网流量数据没有先验知识。我们在一个真实的基于物联网的网络数据集上展示了我们的结果,并展示了我们提出的技术对基于重建错误的自编码器方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Botnet Attack Detection at the IoT Edge Based on Sparse Representation
Internet-of-Things (IoT) aims at interconnecting thousands or millions of smart objects/devices in a seamless way by sensing, processing and analyzing huge amount of data obtained from heterogeneous IoT devices. This rapid development of IoT-oriented infrastructures comes at the cost of increased security threats through IoT-based botnet attacks. In this work, we present an IoT botnet attack detection method based on a sparsity representation framework using a reconstruction error thresholding rule for identifying malicious network traffic at the IoT edge coming from compromised IoT devices. The botnet attack detection is performed based on small-sized benign IoT network traffic data, and thus we have no prior knowledge about malicious IoT traffic data. We present our results on a real IoT-based network dataset and show the efficacy of our proposed technique against a reconstruction error-based autoencoder approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信