绿色云数据中心两阶段虚拟机布局算法的评估

Fabio López-Pires, B. Barán, Carolina Pereira, Marcelo Velázquez, Osvaldo González
{"title":"绿色云数据中心两阶段虚拟机布局算法的评估","authors":"Fabio López-Pires, B. Barán, Carolina Pereira, Marcelo Velázquez, Osvaldo González","doi":"10.1109/FAS-W.2019.00028","DOIUrl":null,"url":null,"abstract":"Cloud Computing Datacenters represent a power-intensive industry with well-known economical and ecological challenges. This work focusses on Virtual Machine Placement (VMP) problems as a valid alternative to address mentioned challenges. An experimental evaluation of 36 VMP optimization algorithms for power consumption minimization is presented. Algorithms were evaluated under uncertainty of 4 different dynamic parameters, considering 400 experimental scenarios and taking into account an average objective function cost as evaluation criterion. Experimental results indicate that two-phase algorithms considering predictionbased VMPr Triggering and update-based VMPr Recovering methods are best suited for power consumption minimization.","PeriodicalId":368308,"journal":{"name":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Two-Phase Virtual Machine Placement Algorithms for Green Cloud Datacenters\",\"authors\":\"Fabio López-Pires, B. Barán, Carolina Pereira, Marcelo Velázquez, Osvaldo González\",\"doi\":\"10.1109/FAS-W.2019.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud Computing Datacenters represent a power-intensive industry with well-known economical and ecological challenges. This work focusses on Virtual Machine Placement (VMP) problems as a valid alternative to address mentioned challenges. An experimental evaluation of 36 VMP optimization algorithms for power consumption minimization is presented. Algorithms were evaluated under uncertainty of 4 different dynamic parameters, considering 400 experimental scenarios and taking into account an average objective function cost as evaluation criterion. Experimental results indicate that two-phase algorithms considering predictionbased VMPr Triggering and update-based VMPr Recovering methods are best suited for power consumption minimization.\",\"PeriodicalId\":368308,\"journal\":{\"name\":\"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAS-W.2019.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2019.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

云计算数据中心是一个能源密集型行业,具有众所周知的经济和生态挑战。这项工作的重点是虚拟机放置(VMP)问题,作为解决上述挑战的有效替代方案。对36种VMP优化算法进行了功耗最小化的实验评估。在4种不同动态参数的不确定性下,考虑400个实验场景,以平均目标函数代价为评价标准,对算法进行了评价。实验结果表明,考虑基于预测的VMPr触发和基于更新的VMPr恢复方法的两阶段算法最适合于功耗最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Two-Phase Virtual Machine Placement Algorithms for Green Cloud Datacenters
Cloud Computing Datacenters represent a power-intensive industry with well-known economical and ecological challenges. This work focusses on Virtual Machine Placement (VMP) problems as a valid alternative to address mentioned challenges. An experimental evaluation of 36 VMP optimization algorithms for power consumption minimization is presented. Algorithms were evaluated under uncertainty of 4 different dynamic parameters, considering 400 experimental scenarios and taking into account an average objective function cost as evaluation criterion. Experimental results indicate that two-phase algorithms considering predictionbased VMPr Triggering and update-based VMPr Recovering methods are best suited for power consumption minimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信