窄带模拟信号间信息因果关系的非参数估计

Simona Poilinca, G. Abreu
{"title":"窄带模拟信号间信息因果关系的非参数估计","authors":"Simona Poilinca, G. Abreu","doi":"10.1109/ISWCS.2015.7454361","DOIUrl":null,"url":null,"abstract":"In this paper we address the dimensionality problem regarding information causality estimation and propose a new method to approximate directed information by identifying and eliminating superfluous calculations. Using only the most informational components we reduce conditional mutual information terms while capturing all the instantaneous or lagged dependencies between stochastic signals. Our method is tested on simulated analog narrowband signals with varying causal relationships.","PeriodicalId":383105,"journal":{"name":"2015 International Symposium on Wireless Communication Systems (ISWCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric estimation of information causality between analog narrowband signals\",\"authors\":\"Simona Poilinca, G. Abreu\",\"doi\":\"10.1109/ISWCS.2015.7454361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the dimensionality problem regarding information causality estimation and propose a new method to approximate directed information by identifying and eliminating superfluous calculations. Using only the most informational components we reduce conditional mutual information terms while capturing all the instantaneous or lagged dependencies between stochastic signals. Our method is tested on simulated analog narrowband signals with varying causal relationships.\",\"PeriodicalId\":383105,\"journal\":{\"name\":\"2015 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2015.7454361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2015.7454361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了信息因果估计的维数问题,提出了一种通过识别和消除多余计算来近似有向信息的新方法。仅使用信息量最大的组件,我们减少了条件互信息项,同时捕获了随机信号之间的所有瞬时或滞后依赖。我们的方法在具有不同因果关系的模拟窄带信号上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric estimation of information causality between analog narrowband signals
In this paper we address the dimensionality problem regarding information causality estimation and propose a new method to approximate directed information by identifying and eliminating superfluous calculations. Using only the most informational components we reduce conditional mutual information terms while capturing all the instantaneous or lagged dependencies between stochastic signals. Our method is tested on simulated analog narrowband signals with varying causal relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信