{"title":"工艺变化下定时良率的提高对触发器软错误率的影响","authors":"H. Mostafa, M. Anis, M. Elmasry","doi":"10.1109/ASQED.2009.5206289","DOIUrl":null,"url":null,"abstract":"In deeply pipelined synchronous systems, any violation of the timing constraints of the flip-flops can cause the overall system to malfunction. Due to CMOS technology scaling, increased process variations result in a large delay variability causing unacceptable loss in the timing yield. Several variation tolerant techniques are introduced to mitigate this variability challenge by improving the timing yield. In the mean time, devices are getting smaller, faster, and operating at lower supply voltages. These reduced capacitances and power supply voltages combined with the increased chip density to perform more functionality increase the soft errors susceptibility and make it one of the essential design challenges. Moreover, there are many flip-flops topologies that vary in their relative performance and power consumption which make the selection decision very difficult to flip-flops designers especially under variability and soft errors challenges. Therefore, a comparative analysis between these different flip-flops topologies considering these scaling challenges is beneficial to guide the flip-flops designers in selecting the best topology for their specific application constraints. This paper presents a comparative analysis of the timing yield improvement impact on flip-flops soft error rate by using the STMicroelectronics 65-nm CMOS technology. The analyzed flip-flops are compared for power and power-delay product (PDP) overheads to achieve this timing yield improvement. Then, they are compared for the soft error susceptibility. Finally, it is shown that the timing yield improvement improves the flip-flops soft error immunity significantly.","PeriodicalId":437303,"journal":{"name":"2009 1st Asia Symposium on Quality Electronic Design","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The impact of timing yield improvement under process variation on flip-flops soft error rate\",\"authors\":\"H. Mostafa, M. Anis, M. Elmasry\",\"doi\":\"10.1109/ASQED.2009.5206289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In deeply pipelined synchronous systems, any violation of the timing constraints of the flip-flops can cause the overall system to malfunction. Due to CMOS technology scaling, increased process variations result in a large delay variability causing unacceptable loss in the timing yield. Several variation tolerant techniques are introduced to mitigate this variability challenge by improving the timing yield. In the mean time, devices are getting smaller, faster, and operating at lower supply voltages. These reduced capacitances and power supply voltages combined with the increased chip density to perform more functionality increase the soft errors susceptibility and make it one of the essential design challenges. Moreover, there are many flip-flops topologies that vary in their relative performance and power consumption which make the selection decision very difficult to flip-flops designers especially under variability and soft errors challenges. Therefore, a comparative analysis between these different flip-flops topologies considering these scaling challenges is beneficial to guide the flip-flops designers in selecting the best topology for their specific application constraints. This paper presents a comparative analysis of the timing yield improvement impact on flip-flops soft error rate by using the STMicroelectronics 65-nm CMOS technology. The analyzed flip-flops are compared for power and power-delay product (PDP) overheads to achieve this timing yield improvement. Then, they are compared for the soft error susceptibility. Finally, it is shown that the timing yield improvement improves the flip-flops soft error immunity significantly.\",\"PeriodicalId\":437303,\"journal\":{\"name\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASQED.2009.5206289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 1st Asia Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASQED.2009.5206289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The impact of timing yield improvement under process variation on flip-flops soft error rate
In deeply pipelined synchronous systems, any violation of the timing constraints of the flip-flops can cause the overall system to malfunction. Due to CMOS technology scaling, increased process variations result in a large delay variability causing unacceptable loss in the timing yield. Several variation tolerant techniques are introduced to mitigate this variability challenge by improving the timing yield. In the mean time, devices are getting smaller, faster, and operating at lower supply voltages. These reduced capacitances and power supply voltages combined with the increased chip density to perform more functionality increase the soft errors susceptibility and make it one of the essential design challenges. Moreover, there are many flip-flops topologies that vary in their relative performance and power consumption which make the selection decision very difficult to flip-flops designers especially under variability and soft errors challenges. Therefore, a comparative analysis between these different flip-flops topologies considering these scaling challenges is beneficial to guide the flip-flops designers in selecting the best topology for their specific application constraints. This paper presents a comparative analysis of the timing yield improvement impact on flip-flops soft error rate by using the STMicroelectronics 65-nm CMOS technology. The analyzed flip-flops are compared for power and power-delay product (PDP) overheads to achieve this timing yield improvement. Then, they are compared for the soft error susceptibility. Finally, it is shown that the timing yield improvement improves the flip-flops soft error immunity significantly.