基于真实世界信号的多尺度字典稀疏心电表示

D. Luengo, David Meltzer, T. Trigano
{"title":"基于真实世界信号的多尺度字典稀疏心电表示","authors":"D. Luengo, David Meltzer, T. Trigano","doi":"10.1109/TSP.2018.8441329","DOIUrl":null,"url":null,"abstract":"The electrocardiogram (ECG) was the first biomedical signal where digital signal processing techniques were extensively applied. By its own nature, the ECG is typically a sparse signal, composed of regular activations (the QRS complexes and other waveforms like the P and T waves) and periods of inactivity (corresponding to isoelectric intervals like the PQ or ST segments), plus noise and interferences. In this work, we show how to construct a realistic multi-scale dictionary using waveforms recorded from realworld patients and how to apply this dictionary to obtain a sparse representation of ECG signals. Simulations on realworld records from Physionet show the good performance of the proposed approach.","PeriodicalId":383018,"journal":{"name":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sparse ECG Representation with a Multi-Scale Dictionary Derived from Real-World Signals\",\"authors\":\"D. Luengo, David Meltzer, T. Trigano\",\"doi\":\"10.1109/TSP.2018.8441329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrocardiogram (ECG) was the first biomedical signal where digital signal processing techniques were extensively applied. By its own nature, the ECG is typically a sparse signal, composed of regular activations (the QRS complexes and other waveforms like the P and T waves) and periods of inactivity (corresponding to isoelectric intervals like the PQ or ST segments), plus noise and interferences. In this work, we show how to construct a realistic multi-scale dictionary using waveforms recorded from realworld patients and how to apply this dictionary to obtain a sparse representation of ECG signals. Simulations on realworld records from Physionet show the good performance of the proposed approach.\",\"PeriodicalId\":383018,\"journal\":{\"name\":\"2018 41st International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 41st International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP.2018.8441329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2018.8441329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

心电图是第一个广泛应用数字信号处理技术的生物医学信号。就其本身的性质而言,ECG通常是一个稀疏信号,由规则激活(QRS复合物和其他波形,如P波和T波)和不活动周期(对应于等电间隔,如PQ或ST段)以及噪声和干扰组成。在这项工作中,我们展示了如何使用从现实世界患者记录的波形来构建一个逼真的多尺度字典,以及如何应用该字典来获得心电信号的稀疏表示。对来自Physionet的真实世界记录的仿真表明了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse ECG Representation with a Multi-Scale Dictionary Derived from Real-World Signals
The electrocardiogram (ECG) was the first biomedical signal where digital signal processing techniques were extensively applied. By its own nature, the ECG is typically a sparse signal, composed of regular activations (the QRS complexes and other waveforms like the P and T waves) and periods of inactivity (corresponding to isoelectric intervals like the PQ or ST segments), plus noise and interferences. In this work, we show how to construct a realistic multi-scale dictionary using waveforms recorded from realworld patients and how to apply this dictionary to obtain a sparse representation of ECG signals. Simulations on realworld records from Physionet show the good performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信