{"title":"基于真实世界信号的多尺度字典稀疏心电表示","authors":"D. Luengo, David Meltzer, T. Trigano","doi":"10.1109/TSP.2018.8441329","DOIUrl":null,"url":null,"abstract":"The electrocardiogram (ECG) was the first biomedical signal where digital signal processing techniques were extensively applied. By its own nature, the ECG is typically a sparse signal, composed of regular activations (the QRS complexes and other waveforms like the P and T waves) and periods of inactivity (corresponding to isoelectric intervals like the PQ or ST segments), plus noise and interferences. In this work, we show how to construct a realistic multi-scale dictionary using waveforms recorded from realworld patients and how to apply this dictionary to obtain a sparse representation of ECG signals. Simulations on realworld records from Physionet show the good performance of the proposed approach.","PeriodicalId":383018,"journal":{"name":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sparse ECG Representation with a Multi-Scale Dictionary Derived from Real-World Signals\",\"authors\":\"D. Luengo, David Meltzer, T. Trigano\",\"doi\":\"10.1109/TSP.2018.8441329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrocardiogram (ECG) was the first biomedical signal where digital signal processing techniques were extensively applied. By its own nature, the ECG is typically a sparse signal, composed of regular activations (the QRS complexes and other waveforms like the P and T waves) and periods of inactivity (corresponding to isoelectric intervals like the PQ or ST segments), plus noise and interferences. In this work, we show how to construct a realistic multi-scale dictionary using waveforms recorded from realworld patients and how to apply this dictionary to obtain a sparse representation of ECG signals. Simulations on realworld records from Physionet show the good performance of the proposed approach.\",\"PeriodicalId\":383018,\"journal\":{\"name\":\"2018 41st International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 41st International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP.2018.8441329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2018.8441329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse ECG Representation with a Multi-Scale Dictionary Derived from Real-World Signals
The electrocardiogram (ECG) was the first biomedical signal where digital signal processing techniques were extensively applied. By its own nature, the ECG is typically a sparse signal, composed of regular activations (the QRS complexes and other waveforms like the P and T waves) and periods of inactivity (corresponding to isoelectric intervals like the PQ or ST segments), plus noise and interferences. In this work, we show how to construct a realistic multi-scale dictionary using waveforms recorded from realworld patients and how to apply this dictionary to obtain a sparse representation of ECG signals. Simulations on realworld records from Physionet show the good performance of the proposed approach.