Y. Gil, James Honaker, Shikhar Gupta, Yibo Ma, Vito D'Orazio, D. Garijo, S. Gadewar, Qifan Yang, N. Jahanshad
{"title":"走向人类引导的机器学习","authors":"Y. Gil, James Honaker, Shikhar Gupta, Yibo Ma, Vito D'Orazio, D. Garijo, S. Gadewar, Qifan Yang, N. Jahanshad","doi":"10.1145/3301275.3302324","DOIUrl":null,"url":null,"abstract":"Automated Machine Learning (AutoML) systems are emerging that automatically search for possible solutions from a large space of possible kinds of models. Although fully automated machine learning is appropriate for many applications, users often have knowledge that supplements and constraints the available data and solutions. This paper proposes human-guided machine learning (HGML) as a hybrid approach where a user interacts with an AutoML system and tasks it to explore different problem settings that reflect the user's knowledge about the data available. We present: 1) a task analysis of HGML that shows the tasks that a user would want to carry out, 2) a characterization of two scientific publications, one in neuroscience and one in political science, in terms of how the authors would search for solutions using an AutoML system, 3) requirements for HGML based on those characterizations, and 4) an assessment of existing AutoML systems in terms of those requirements.","PeriodicalId":153096,"journal":{"name":"Proceedings of the 24th International Conference on Intelligent User Interfaces","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Towards human-guided machine learning\",\"authors\":\"Y. Gil, James Honaker, Shikhar Gupta, Yibo Ma, Vito D'Orazio, D. Garijo, S. Gadewar, Qifan Yang, N. Jahanshad\",\"doi\":\"10.1145/3301275.3302324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated Machine Learning (AutoML) systems are emerging that automatically search for possible solutions from a large space of possible kinds of models. Although fully automated machine learning is appropriate for many applications, users often have knowledge that supplements and constraints the available data and solutions. This paper proposes human-guided machine learning (HGML) as a hybrid approach where a user interacts with an AutoML system and tasks it to explore different problem settings that reflect the user's knowledge about the data available. We present: 1) a task analysis of HGML that shows the tasks that a user would want to carry out, 2) a characterization of two scientific publications, one in neuroscience and one in political science, in terms of how the authors would search for solutions using an AutoML system, 3) requirements for HGML based on those characterizations, and 4) an assessment of existing AutoML systems in terms of those requirements.\",\"PeriodicalId\":153096,\"journal\":{\"name\":\"Proceedings of the 24th International Conference on Intelligent User Interfaces\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th International Conference on Intelligent User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3301275.3302324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301275.3302324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Machine Learning (AutoML) systems are emerging that automatically search for possible solutions from a large space of possible kinds of models. Although fully automated machine learning is appropriate for many applications, users often have knowledge that supplements and constraints the available data and solutions. This paper proposes human-guided machine learning (HGML) as a hybrid approach where a user interacts with an AutoML system and tasks it to explore different problem settings that reflect the user's knowledge about the data available. We present: 1) a task analysis of HGML that shows the tasks that a user would want to carry out, 2) a characterization of two scientific publications, one in neuroscience and one in political science, in terms of how the authors would search for solutions using an AutoML system, 3) requirements for HGML based on those characterizations, and 4) an assessment of existing AutoML systems in terms of those requirements.