{"title":"11.5pW/bit 400mV 5T增益单元eDRAM,用于28nm FD-SOI的ULP应用","authors":"R. Giterman, A. Teman, A. Fish","doi":"10.1109/S3S.2017.8308757","DOIUrl":null,"url":null,"abstract":"The silicon area of ultra-low power (ULP) applications is often dominated by embedded memories, which are the main consumers of both the static and dynamic power in these applications [1]. Supply voltage scaling down to the sub-threshold region is widely used to significantly reduce both the static and dynamic power dissipation of ULP applications [2]. However, embedded memories, typically implemented with SRAM, have been the limiting factor for aggressive voltage scaling, since the conventional 6-transistor (6T) SRAM bitcell becomes unreliable at near-threshold operating voltages [3-6].","PeriodicalId":333587,"journal":{"name":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A 11.5pW/bit 400mV 5T gain-cell eDRAM for ULP applications in 28nm FD-SOI\",\"authors\":\"R. Giterman, A. Teman, A. Fish\",\"doi\":\"10.1109/S3S.2017.8308757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The silicon area of ultra-low power (ULP) applications is often dominated by embedded memories, which are the main consumers of both the static and dynamic power in these applications [1]. Supply voltage scaling down to the sub-threshold region is widely used to significantly reduce both the static and dynamic power dissipation of ULP applications [2]. However, embedded memories, typically implemented with SRAM, have been the limiting factor for aggressive voltage scaling, since the conventional 6-transistor (6T) SRAM bitcell becomes unreliable at near-threshold operating voltages [3-6].\",\"PeriodicalId\":333587,\"journal\":{\"name\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S3S.2017.8308757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2017.8308757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 11.5pW/bit 400mV 5T gain-cell eDRAM for ULP applications in 28nm FD-SOI
The silicon area of ultra-low power (ULP) applications is often dominated by embedded memories, which are the main consumers of both the static and dynamic power in these applications [1]. Supply voltage scaling down to the sub-threshold region is widely used to significantly reduce both the static and dynamic power dissipation of ULP applications [2]. However, embedded memories, typically implemented with SRAM, have been the limiting factor for aggressive voltage scaling, since the conventional 6-transistor (6T) SRAM bitcell becomes unreliable at near-threshold operating voltages [3-6].