使用模糊逻辑增强图像的视觉质量

T. Aarthi, E. Sowmiya, N. Sairam
{"title":"使用模糊逻辑增强图像的视觉质量","authors":"T. Aarthi, E. Sowmiya, N. Sairam","doi":"10.1109/ISCO.2014.7103952","DOIUrl":null,"url":null,"abstract":"Image enhancement techniques are used to alter the intensity value of an image in order to improve the visual quality. Many popular enhancement techniques fail to work in some applications due to background noise generated in the image. To address this problem, we propose a fuzzy enhancement technique. In this technique, the gray scale image is fuzzified and it is defuzzified after changing its membership values. Experimental results are shown for different gray scale images along with its performance.","PeriodicalId":119329,"journal":{"name":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhancement of visual quality of an image using fuzzy logic\",\"authors\":\"T. Aarthi, E. Sowmiya, N. Sairam\",\"doi\":\"10.1109/ISCO.2014.7103952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image enhancement techniques are used to alter the intensity value of an image in order to improve the visual quality. Many popular enhancement techniques fail to work in some applications due to background noise generated in the image. To address this problem, we propose a fuzzy enhancement technique. In this technique, the gray scale image is fuzzified and it is defuzzified after changing its membership values. Experimental results are shown for different gray scale images along with its performance.\",\"PeriodicalId\":119329,\"journal\":{\"name\":\"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCO.2014.7103952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2014.7103952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像增强技术是用来改变图像的强度值,以提高视觉质量。由于图像中产生的背景噪声,许多流行的增强技术在某些应用中不起作用。为了解决这个问题,我们提出了一种模糊增强技术。该方法首先对灰度图像进行模糊化处理,然后改变灰度图像的隶属度值进行去模糊处理。给出了不同灰度图像的实验结果,并对其性能进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of visual quality of an image using fuzzy logic
Image enhancement techniques are used to alter the intensity value of an image in order to improve the visual quality. Many popular enhancement techniques fail to work in some applications due to background noise generated in the image. To address this problem, we propose a fuzzy enhancement technique. In this technique, the gray scale image is fuzzified and it is defuzzified after changing its membership values. Experimental results are shown for different gray scale images along with its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信