{"title":"一种用于三相串联有源滤波器电压谐波抵消无功补偿的线性解耦多环控制方案","authors":"H. Kanaan, K. Al-haddad","doi":"10.1109/ICHQP.2004.1409371","DOIUrl":null,"url":null,"abstract":"Voltage and current harmonics, which are injected in the utility by nonlinear loads, cause major problems that tend to deteriorate the power quality at the mains. To reduce such harmonics, active power filters (APF) are commonly employed. Where as shunt APFs are used for current-type load, series APFs are applied to voltage-type load and allow both voltage and current harmonic compensation. A new constant-frequency control scheme for a series APF is designed. The elaboration of the control law is based on a small-signal averaged model of the converter, computed in the (d,q) synchronous frame. The control scheme consists of two successive loops: the inner loop that ensure voltage harmonic compensation at the AC side is designed on the basis of the linear decoupling principle, whereas the outer loop that uses a simple PI controller ensures voltage regulation at the DC side of the filter. The control system is implemented numerically using Matlab/Simulink tool. The performance of the proposed control approach is finally discussed through the obtained simulation results.","PeriodicalId":406398,"journal":{"name":"2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A linear decoupling multiple-loops control scheme applied to a three-phase series active power filter for voltage harmonic cancellation reactive power compensation\",\"authors\":\"H. Kanaan, K. Al-haddad\",\"doi\":\"10.1109/ICHQP.2004.1409371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage and current harmonics, which are injected in the utility by nonlinear loads, cause major problems that tend to deteriorate the power quality at the mains. To reduce such harmonics, active power filters (APF) are commonly employed. Where as shunt APFs are used for current-type load, series APFs are applied to voltage-type load and allow both voltage and current harmonic compensation. A new constant-frequency control scheme for a series APF is designed. The elaboration of the control law is based on a small-signal averaged model of the converter, computed in the (d,q) synchronous frame. The control scheme consists of two successive loops: the inner loop that ensure voltage harmonic compensation at the AC side is designed on the basis of the linear decoupling principle, whereas the outer loop that uses a simple PI controller ensures voltage regulation at the DC side of the filter. The control system is implemented numerically using Matlab/Simulink tool. The performance of the proposed control approach is finally discussed through the obtained simulation results.\",\"PeriodicalId\":406398,\"journal\":{\"name\":\"2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHQP.2004.1409371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP.2004.1409371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A linear decoupling multiple-loops control scheme applied to a three-phase series active power filter for voltage harmonic cancellation reactive power compensation
Voltage and current harmonics, which are injected in the utility by nonlinear loads, cause major problems that tend to deteriorate the power quality at the mains. To reduce such harmonics, active power filters (APF) are commonly employed. Where as shunt APFs are used for current-type load, series APFs are applied to voltage-type load and allow both voltage and current harmonic compensation. A new constant-frequency control scheme for a series APF is designed. The elaboration of the control law is based on a small-signal averaged model of the converter, computed in the (d,q) synchronous frame. The control scheme consists of two successive loops: the inner loop that ensure voltage harmonic compensation at the AC side is designed on the basis of the linear decoupling principle, whereas the outer loop that uses a simple PI controller ensures voltage regulation at the DC side of the filter. The control system is implemented numerically using Matlab/Simulink tool. The performance of the proposed control approach is finally discussed through the obtained simulation results.