Ioannis S. Stamelakos, S. Xydis, G. Palermo, C. Silvano
{"title":"功率效率近阈值多核架构的变化感知电压岛形成","authors":"Ioannis S. Stamelakos, S. Xydis, G. Palermo, C. Silvano","doi":"10.1109/ASPDAC.2014.6742907","DOIUrl":null,"url":null,"abstract":"The power-wall problem and its dual utilization-wall problem are considered among the main barriers to feasible/efficient scaling in the manycore era. Several researchers have proposed the usage of aggressive voltage scaling techniques at the near-threshold voltage region, promising significant improvements in power efficiency at the expense of reduced performance values and higher sensitivity to process parametric variations. In this paper, we introduce a variability-aware framework for exploring the potential power-efficiency of the Near Threshold Computing (NTC) under performance constraints. We propose and analyze the usage of fine-grained voltage islands to cope with the increased effect of variability problem in the NTC region. For the considered workloads, we found that the power impact of fine-grained voltage islands formation can be up to 35% for a 128-core chip operating at NTC region, while the adoption of a variability aware technique can bring to a power reduction of up to 43% with respect to a variability unaware technique. Finally, we show that voltage regulator's complexity, in terms of voltage quantization levels, has a very low effect on the power efficiency at NTC, making in that way the usage of voltage islands a feasible solution for copying with variability1.","PeriodicalId":234635,"journal":{"name":"2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Variation-aware voltage island formation for power efficient near-threshold manycore architectures\",\"authors\":\"Ioannis S. Stamelakos, S. Xydis, G. Palermo, C. Silvano\",\"doi\":\"10.1109/ASPDAC.2014.6742907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power-wall problem and its dual utilization-wall problem are considered among the main barriers to feasible/efficient scaling in the manycore era. Several researchers have proposed the usage of aggressive voltage scaling techniques at the near-threshold voltage region, promising significant improvements in power efficiency at the expense of reduced performance values and higher sensitivity to process parametric variations. In this paper, we introduce a variability-aware framework for exploring the potential power-efficiency of the Near Threshold Computing (NTC) under performance constraints. We propose and analyze the usage of fine-grained voltage islands to cope with the increased effect of variability problem in the NTC region. For the considered workloads, we found that the power impact of fine-grained voltage islands formation can be up to 35% for a 128-core chip operating at NTC region, while the adoption of a variability aware technique can bring to a power reduction of up to 43% with respect to a variability unaware technique. Finally, we show that voltage regulator's complexity, in terms of voltage quantization levels, has a very low effect on the power efficiency at NTC, making in that way the usage of voltage islands a feasible solution for copying with variability1.\",\"PeriodicalId\":234635,\"journal\":{\"name\":\"2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2014.6742907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2014.6742907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variation-aware voltage island formation for power efficient near-threshold manycore architectures
The power-wall problem and its dual utilization-wall problem are considered among the main barriers to feasible/efficient scaling in the manycore era. Several researchers have proposed the usage of aggressive voltage scaling techniques at the near-threshold voltage region, promising significant improvements in power efficiency at the expense of reduced performance values and higher sensitivity to process parametric variations. In this paper, we introduce a variability-aware framework for exploring the potential power-efficiency of the Near Threshold Computing (NTC) under performance constraints. We propose and analyze the usage of fine-grained voltage islands to cope with the increased effect of variability problem in the NTC region. For the considered workloads, we found that the power impact of fine-grained voltage islands formation can be up to 35% for a 128-core chip operating at NTC region, while the adoption of a variability aware technique can bring to a power reduction of up to 43% with respect to a variability unaware technique. Finally, we show that voltage regulator's complexity, in terms of voltage quantization levels, has a very low effect on the power efficiency at NTC, making in that way the usage of voltage islands a feasible solution for copying with variability1.