{"title":"316LR型不锈钢螺钉的剪切断裂","authors":"","doi":"10.31399/asm.fach.med.c0048403","DOIUrl":null,"url":null,"abstract":"\n During the internal fixation, the type 316LR stainless steel cortical bone screw failed. Extensive spiral deformation was revealed by the fracture surface. Dimple structure characteristic of a ductile failure mode was observed with dimples oriented uniformly in the deformation direction. A zone of heavily deformed grains at the fracture edge was revealed by longitudinal metallographic examination. The shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy were discussed for purpose of comparison.","PeriodicalId":125471,"journal":{"name":"ASM Failure Analysis Case Histories: Medical and Biomedical Devices","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shearing Fracture of a Type 316LR Stainless Steel Screw\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.med.c0048403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n During the internal fixation, the type 316LR stainless steel cortical bone screw failed. Extensive spiral deformation was revealed by the fracture surface. Dimple structure characteristic of a ductile failure mode was observed with dimples oriented uniformly in the deformation direction. A zone of heavily deformed grains at the fracture edge was revealed by longitudinal metallographic examination. The shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy were discussed for purpose of comparison.\",\"PeriodicalId\":125471,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Medical and Biomedical Devices\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Medical and Biomedical Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.med.c0048403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Medical and Biomedical Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.med.c0048403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shearing Fracture of a Type 316LR Stainless Steel Screw
During the internal fixation, the type 316LR stainless steel cortical bone screw failed. Extensive spiral deformation was revealed by the fracture surface. Dimple structure characteristic of a ductile failure mode was observed with dimples oriented uniformly in the deformation direction. A zone of heavily deformed grains at the fracture edge was revealed by longitudinal metallographic examination. The shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy were discussed for purpose of comparison.