A. Milani, G. Kannan, I. Panahi, R. Briggs, K. Gopinath
{"title":"fMRI主动降噪的无延迟子带自适应算法的权重叠加分析","authors":"A. Milani, G. Kannan, I. Panahi, R. Briggs, K. Gopinath","doi":"10.1109/EMBSW.2007.4454192","DOIUrl":null,"url":null,"abstract":"High level acoustic noise in fMRI scanners is a source of concern to patients and health care providers. Active noise control systems employing delayless subband adaptive filters have been shown effective in fMRI acoustic noise reduction [3] [4]. In this method [5], adaptive filtering is done in subbands and the subband weights are stacked together to construct the fullband filter weights. There are two types of stacking methods called FFT and FFT-2. These stacking methods introduce distortion which limit the noise reduction level. In this paper, we model the distortion and analyze the effect of distortion when different adaptive schemes (nLMS, APA, RLS) are used. This analysis helps in selecting the appropriate adaptive scheme and determining the optimum number of subbands.","PeriodicalId":333843,"journal":{"name":"2007 IEEE Dallas Engineering in Medicine and Biology Workshop","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Weight Stacking Analysis of Delayless Subband Adaptive Algorithms for fMRI Active Noise Cancellation\",\"authors\":\"A. Milani, G. Kannan, I. Panahi, R. Briggs, K. Gopinath\",\"doi\":\"10.1109/EMBSW.2007.4454192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High level acoustic noise in fMRI scanners is a source of concern to patients and health care providers. Active noise control systems employing delayless subband adaptive filters have been shown effective in fMRI acoustic noise reduction [3] [4]. In this method [5], adaptive filtering is done in subbands and the subband weights are stacked together to construct the fullband filter weights. There are two types of stacking methods called FFT and FFT-2. These stacking methods introduce distortion which limit the noise reduction level. In this paper, we model the distortion and analyze the effect of distortion when different adaptive schemes (nLMS, APA, RLS) are used. This analysis helps in selecting the appropriate adaptive scheme and determining the optimum number of subbands.\",\"PeriodicalId\":333843,\"journal\":{\"name\":\"2007 IEEE Dallas Engineering in Medicine and Biology Workshop\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Dallas Engineering in Medicine and Biology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBSW.2007.4454192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Dallas Engineering in Medicine and Biology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBSW.2007.4454192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weight Stacking Analysis of Delayless Subband Adaptive Algorithms for fMRI Active Noise Cancellation
High level acoustic noise in fMRI scanners is a source of concern to patients and health care providers. Active noise control systems employing delayless subband adaptive filters have been shown effective in fMRI acoustic noise reduction [3] [4]. In this method [5], adaptive filtering is done in subbands and the subband weights are stacked together to construct the fullband filter weights. There are two types of stacking methods called FFT and FFT-2. These stacking methods introduce distortion which limit the noise reduction level. In this paper, we model the distortion and analyze the effect of distortion when different adaptive schemes (nLMS, APA, RLS) are used. This analysis helps in selecting the appropriate adaptive scheme and determining the optimum number of subbands.