基于小波变换和样本熵的五指欠驱动假手肌电控制

Jingdong Zhao, Zongwu Xie, Li Jiang, H. Cai, Hong Liu, G. Hirzinger
{"title":"基于小波变换和样本熵的五指欠驱动假手肌电控制","authors":"Jingdong Zhao, Zongwu Xie, Li Jiang, H. Cai, Hong Liu, G. Hirzinger","doi":"10.1109/IROS.2006.282425","DOIUrl":null,"url":null,"abstract":"A new five-fingered underactuated prosthetic hand control system is presented in this paper. The prosthetic hand control part is based on an EMG motion pattern classifier which combines VLR (variable learning rate) based neural network with wavelet transform and sample entropy. This motion pattern classifier can successfully identify flexion and extension of the thumb, the index finger and the middle finger, by measuring the surface EMG signals through three electrodes mounted on the flexor digitorum profundus, flexor pollicis longus and extensor digitorum. Furthermore, via continuously controlling single finger's motion, the prosthetic hand can achieve more prehensile postures such as power grasp, fingertip grasp, etc. The experimental results show that the classifier has a great potential application to the control of bionic man-machine systems because of its high recognition capability","PeriodicalId":237562,"journal":{"name":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"EMG Control for a Five-fingered Underactuated Prosthetic Hand Based on Wavelet Transform and Sample Entropy\",\"authors\":\"Jingdong Zhao, Zongwu Xie, Li Jiang, H. Cai, Hong Liu, G. Hirzinger\",\"doi\":\"10.1109/IROS.2006.282425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new five-fingered underactuated prosthetic hand control system is presented in this paper. The prosthetic hand control part is based on an EMG motion pattern classifier which combines VLR (variable learning rate) based neural network with wavelet transform and sample entropy. This motion pattern classifier can successfully identify flexion and extension of the thumb, the index finger and the middle finger, by measuring the surface EMG signals through three electrodes mounted on the flexor digitorum profundus, flexor pollicis longus and extensor digitorum. Furthermore, via continuously controlling single finger's motion, the prosthetic hand can achieve more prehensile postures such as power grasp, fingertip grasp, etc. The experimental results show that the classifier has a great potential application to the control of bionic man-machine systems because of its high recognition capability\",\"PeriodicalId\":237562,\"journal\":{\"name\":\"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2006.282425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2006.282425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

提出了一种新型五指欠驱动假手控制系统。假手控制部分是基于可变学习率神经网络与小波变换和样本熵相结合的肌电信号运动模式分类器。该运动模式分类器通过安装在指深屈肌、拇长屈肌和指伸肌上的三个电极测量表面肌电信号,可以成功识别拇指、食指和中指的屈伸。此外,通过对单个手指的连续控制,假手可以实现更多的抓握姿势,如力量抓握、指尖抓握等。实验结果表明,该分类器具有较高的识别能力,在仿生人机系统的控制中具有很大的应用潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EMG Control for a Five-fingered Underactuated Prosthetic Hand Based on Wavelet Transform and Sample Entropy
A new five-fingered underactuated prosthetic hand control system is presented in this paper. The prosthetic hand control part is based on an EMG motion pattern classifier which combines VLR (variable learning rate) based neural network with wavelet transform and sample entropy. This motion pattern classifier can successfully identify flexion and extension of the thumb, the index finger and the middle finger, by measuring the surface EMG signals through three electrodes mounted on the flexor digitorum profundus, flexor pollicis longus and extensor digitorum. Furthermore, via continuously controlling single finger's motion, the prosthetic hand can achieve more prehensile postures such as power grasp, fingertip grasp, etc. The experimental results show that the classifier has a great potential application to the control of bionic man-machine systems because of its high recognition capability
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信