重新审视CEV模型

Wen Cheng, Tianyou Zhang
{"title":"重新审视CEV模型","authors":"Wen Cheng, Tianyou Zhang","doi":"10.2139/ssrn.2487669","DOIUrl":null,"url":null,"abstract":"This note introduces a mathematically rigorous short time approximation of the transition density function of the CEV model. We first apply a change of variable to the CEV operator and transform it to a Schrodinger operator with an inverse square potential, and then construct a Neumann series to the new opeator under weighted Sobolev spaces. To the author’s knowledge, this is the first time that a mathematically rigorous construction for the CEV model is obtained in the financial mathematics literature.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The CEV Model Revisited\",\"authors\":\"Wen Cheng, Tianyou Zhang\",\"doi\":\"10.2139/ssrn.2487669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note introduces a mathematically rigorous short time approximation of the transition density function of the CEV model. We first apply a change of variable to the CEV operator and transform it to a Schrodinger operator with an inverse square potential, and then construct a Neumann series to the new opeator under weighted Sobolev spaces. To the author’s knowledge, this is the first time that a mathematically rigorous construction for the CEV model is obtained in the financial mathematics literature.\",\"PeriodicalId\":177064,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2487669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2487669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了CEV模型的过渡密度函数的数学上严格的短时间近似值。我们首先对CEV算子进行变量变换,并将其转化为具有平方反比势的薛定谔算子,然后在加权Sobolev空间下构造新算子的Neumann级数。据笔者所知,这是金融数学文献中第一次得到CEV模型在数学上的严谨构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The CEV Model Revisited
This note introduces a mathematically rigorous short time approximation of the transition density function of the CEV model. We first apply a change of variable to the CEV operator and transform it to a Schrodinger operator with an inverse square potential, and then construct a Neumann series to the new opeator under weighted Sobolev spaces. To the author’s knowledge, this is the first time that a mathematically rigorous construction for the CEV model is obtained in the financial mathematics literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信