T. W. Kang, S. H. M. Taib, Pooria Moozarm Nia, M. Miyake, K. Shameli
{"title":"纳米锡/银复合材料燃料电池电催化剂的合成与表征","authors":"T. W. Kang, S. H. M. Taib, Pooria Moozarm Nia, M. Miyake, K. Shameli","doi":"10.37934/JRNN.1.1.1221","DOIUrl":null,"url":null,"abstract":"In this research, Sn/Ag nanoparticle composite was produced by using chemical reduction method with the aids of sodium borohydride as reducing agent and sodium succinate as protective agent. The XRD, EDX, and TEM analyses showed that the Sn/Ag nanoparticle composite was formed with an average particle size of 4.37 + 0.44 nm. For the application, LSV analysis was done on Sn nanoparticle and Sn/Ag nanoparticle composite samples, and the analysis showed current produced from Sn/Ag nanoparticle composite (4.10 × 10-6 A) is higher than Sn nanoparticle (3.47 × 10-6 A) at the potential of -0.83V.","PeriodicalId":173619,"journal":{"name":"Journal of Research in Nanoscience and Nanotechnology","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and Characterization of Sn/Ag Nanoparticle Composite as Electro-Catalyst for Fuel Cell\",\"authors\":\"T. W. Kang, S. H. M. Taib, Pooria Moozarm Nia, M. Miyake, K. Shameli\",\"doi\":\"10.37934/JRNN.1.1.1221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, Sn/Ag nanoparticle composite was produced by using chemical reduction method with the aids of sodium borohydride as reducing agent and sodium succinate as protective agent. The XRD, EDX, and TEM analyses showed that the Sn/Ag nanoparticle composite was formed with an average particle size of 4.37 + 0.44 nm. For the application, LSV analysis was done on Sn nanoparticle and Sn/Ag nanoparticle composite samples, and the analysis showed current produced from Sn/Ag nanoparticle composite (4.10 × 10-6 A) is higher than Sn nanoparticle (3.47 × 10-6 A) at the potential of -0.83V.\",\"PeriodicalId\":173619,\"journal\":{\"name\":\"Journal of Research in Nanoscience and Nanotechnology\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research in Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/JRNN.1.1.1221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/JRNN.1.1.1221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Characterization of Sn/Ag Nanoparticle Composite as Electro-Catalyst for Fuel Cell
In this research, Sn/Ag nanoparticle composite was produced by using chemical reduction method with the aids of sodium borohydride as reducing agent and sodium succinate as protective agent. The XRD, EDX, and TEM analyses showed that the Sn/Ag nanoparticle composite was formed with an average particle size of 4.37 + 0.44 nm. For the application, LSV analysis was done on Sn nanoparticle and Sn/Ag nanoparticle composite samples, and the analysis showed current produced from Sn/Ag nanoparticle composite (4.10 × 10-6 A) is higher than Sn nanoparticle (3.47 × 10-6 A) at the potential of -0.83V.