在匹配评分水平上组合步态多特征

S. Ismail, Muhammad Imran Ahmad, M. I. N. Isa, S. Anwar
{"title":"在匹配评分水平上组合步态多特征","authors":"S. Ismail, Muhammad Imran Ahmad, M. I. N. Isa, S. Anwar","doi":"10.1109/ICED.2016.7804688","DOIUrl":null,"url":null,"abstract":"This paper focus to analyze several fusion rule at matching score level to combine important features extracted from gait sequence images for human identification system. Gait sequence image is a non-stationary data and can be modelled using a statistical learning technique. The propose technique consists of three different stages. The pre-processing stage computes the average silhouette images to capture the important information and get a better representation for gait silhouette data. Then a principle component analysis (PCA) technique is applied on the average silhouette to extract the important gait features and reduce a dimension of gait data. Three different features are fused at matching score level by using sum, product and max rule. The proposed algorithm has been tested using a benchmark CASIA datasets. The experimental results show that the best recognition rate is 90% when the fusion is performed using sum rule.","PeriodicalId":410290,"journal":{"name":"2016 3rd International Conference on Electronic Design (ICED)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination of gait multiple features at matching score level\",\"authors\":\"S. Ismail, Muhammad Imran Ahmad, M. I. N. Isa, S. Anwar\",\"doi\":\"10.1109/ICED.2016.7804688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focus to analyze several fusion rule at matching score level to combine important features extracted from gait sequence images for human identification system. Gait sequence image is a non-stationary data and can be modelled using a statistical learning technique. The propose technique consists of three different stages. The pre-processing stage computes the average silhouette images to capture the important information and get a better representation for gait silhouette data. Then a principle component analysis (PCA) technique is applied on the average silhouette to extract the important gait features and reduce a dimension of gait data. Three different features are fused at matching score level by using sum, product and max rule. The proposed algorithm has been tested using a benchmark CASIA datasets. The experimental results show that the best recognition rate is 90% when the fusion is performed using sum rule.\",\"PeriodicalId\":410290,\"journal\":{\"name\":\"2016 3rd International Conference on Electronic Design (ICED)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Electronic Design (ICED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICED.2016.7804688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Electronic Design (ICED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICED.2016.7804688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文重点分析了在匹配分数水平上的几种融合规则,以结合从步态序列图像中提取的重要特征用于人体识别系统。步态序列图像是一种非平稳数据,可以使用统计学习技术进行建模。提议技术包括三个不同的阶段。预处理阶段计算平均轮廓图像,以捕获重要信息,更好地表示步态轮廓数据。然后对平均轮廓进行主成分分析,提取步态的重要特征,对步态数据进行降维处理。利用sum、product和max规则将三个不同的特征融合在匹配分数水平上。该算法已在CASIA基准数据集上进行了测试。实验结果表明,采用和规则进行融合时,识别率最高可达90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combination of gait multiple features at matching score level
This paper focus to analyze several fusion rule at matching score level to combine important features extracted from gait sequence images for human identification system. Gait sequence image is a non-stationary data and can be modelled using a statistical learning technique. The propose technique consists of three different stages. The pre-processing stage computes the average silhouette images to capture the important information and get a better representation for gait silhouette data. Then a principle component analysis (PCA) technique is applied on the average silhouette to extract the important gait features and reduce a dimension of gait data. Three different features are fused at matching score level by using sum, product and max rule. The proposed algorithm has been tested using a benchmark CASIA datasets. The experimental results show that the best recognition rate is 90% when the fusion is performed using sum rule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信