S. Ismail, Muhammad Imran Ahmad, M. I. N. Isa, S. Anwar
{"title":"在匹配评分水平上组合步态多特征","authors":"S. Ismail, Muhammad Imran Ahmad, M. I. N. Isa, S. Anwar","doi":"10.1109/ICED.2016.7804688","DOIUrl":null,"url":null,"abstract":"This paper focus to analyze several fusion rule at matching score level to combine important features extracted from gait sequence images for human identification system. Gait sequence image is a non-stationary data and can be modelled using a statistical learning technique. The propose technique consists of three different stages. The pre-processing stage computes the average silhouette images to capture the important information and get a better representation for gait silhouette data. Then a principle component analysis (PCA) technique is applied on the average silhouette to extract the important gait features and reduce a dimension of gait data. Three different features are fused at matching score level by using sum, product and max rule. The proposed algorithm has been tested using a benchmark CASIA datasets. The experimental results show that the best recognition rate is 90% when the fusion is performed using sum rule.","PeriodicalId":410290,"journal":{"name":"2016 3rd International Conference on Electronic Design (ICED)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination of gait multiple features at matching score level\",\"authors\":\"S. Ismail, Muhammad Imran Ahmad, M. I. N. Isa, S. Anwar\",\"doi\":\"10.1109/ICED.2016.7804688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focus to analyze several fusion rule at matching score level to combine important features extracted from gait sequence images for human identification system. Gait sequence image is a non-stationary data and can be modelled using a statistical learning technique. The propose technique consists of three different stages. The pre-processing stage computes the average silhouette images to capture the important information and get a better representation for gait silhouette data. Then a principle component analysis (PCA) technique is applied on the average silhouette to extract the important gait features and reduce a dimension of gait data. Three different features are fused at matching score level by using sum, product and max rule. The proposed algorithm has been tested using a benchmark CASIA datasets. The experimental results show that the best recognition rate is 90% when the fusion is performed using sum rule.\",\"PeriodicalId\":410290,\"journal\":{\"name\":\"2016 3rd International Conference on Electronic Design (ICED)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Electronic Design (ICED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICED.2016.7804688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Electronic Design (ICED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICED.2016.7804688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combination of gait multiple features at matching score level
This paper focus to analyze several fusion rule at matching score level to combine important features extracted from gait sequence images for human identification system. Gait sequence image is a non-stationary data and can be modelled using a statistical learning technique. The propose technique consists of three different stages. The pre-processing stage computes the average silhouette images to capture the important information and get a better representation for gait silhouette data. Then a principle component analysis (PCA) technique is applied on the average silhouette to extract the important gait features and reduce a dimension of gait data. Three different features are fused at matching score level by using sum, product and max rule. The proposed algorithm has been tested using a benchmark CASIA datasets. The experimental results show that the best recognition rate is 90% when the fusion is performed using sum rule.