改进稀疏路线图生成器

Andrew Dobson, Kostas E. Bekris
{"title":"改进稀疏路线图生成器","authors":"Andrew Dobson, Kostas E. Bekris","doi":"10.1109/ICRA.2013.6631156","DOIUrl":null,"url":null,"abstract":"Roadmap spanners provide a way to acquire sparse data structures that efficiently answer motion planning queries with probabilistic completeness and asymptotic near-optimality. The current SPARS method provides these properties by building two graphs in parallel: a dense asymptotically-optimal roadmap based on PRM* and its spanner. This paper shows that it is possible to relax the conditions under which a sample is added to the spanner and provide guarantees, while not requiring the use of a dense graph. A key aspect of SPARS is that the probability of adding nodes to the roadmap goes to zero as iterations increase, which is maintained in the proposed extension. The paper describes the new algorithm, argues its theoretical properties and evaluates it against PRM* and the original SPARS algorithm. The experimental results show that the memory requirements of the method upon construction are dramatically reduced, while returning competitive quality paths with PRM*. There is a small sacrifice in the size of the final spanner relative to SPARS but the new method still returns graphs orders of magnitudes smaller than PRM*, leading to very efficient online query resolution.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Improving sparse roadmap spanners\",\"authors\":\"Andrew Dobson, Kostas E. Bekris\",\"doi\":\"10.1109/ICRA.2013.6631156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roadmap spanners provide a way to acquire sparse data structures that efficiently answer motion planning queries with probabilistic completeness and asymptotic near-optimality. The current SPARS method provides these properties by building two graphs in parallel: a dense asymptotically-optimal roadmap based on PRM* and its spanner. This paper shows that it is possible to relax the conditions under which a sample is added to the spanner and provide guarantees, while not requiring the use of a dense graph. A key aspect of SPARS is that the probability of adding nodes to the roadmap goes to zero as iterations increase, which is maintained in the proposed extension. The paper describes the new algorithm, argues its theoretical properties and evaluates it against PRM* and the original SPARS algorithm. The experimental results show that the memory requirements of the method upon construction are dramatically reduced, while returning competitive quality paths with PRM*. There is a small sacrifice in the size of the final spanner relative to SPARS but the new method still returns graphs orders of magnitudes smaller than PRM*, leading to very efficient online query resolution.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6631156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6631156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

路线图生成器提供了一种获取稀疏数据结构的方法,该数据结构有效地回答了具有概率完备性和渐近近最优性的运动规划查询。当前的SPARS方法通过并行构建两个图来提供这些属性:基于PRM*及其扳手的密集渐近最优路线图。本文表明,在不需要使用密集图的情况下,可以放宽向扳手中添加样品的条件并提供保证。SPARS的一个关键方面是,随着迭代的增加,向路线图添加节点的概率趋于零,这在建议的扩展中得到了维护。本文描述了新算法,论证了其理论性质,并与PRM*和原SPARS算法进行了比较。实验结果表明,该方法在构造时对内存的要求显著降低,同时与PRM*返回竞争性质量路径。相对于SPARS,最终扳手的大小有一点牺牲,但是新方法仍然返回比PRM*小几个数量级的图,从而导致非常有效的在线查询解析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving sparse roadmap spanners
Roadmap spanners provide a way to acquire sparse data structures that efficiently answer motion planning queries with probabilistic completeness and asymptotic near-optimality. The current SPARS method provides these properties by building two graphs in parallel: a dense asymptotically-optimal roadmap based on PRM* and its spanner. This paper shows that it is possible to relax the conditions under which a sample is added to the spanner and provide guarantees, while not requiring the use of a dense graph. A key aspect of SPARS is that the probability of adding nodes to the roadmap goes to zero as iterations increase, which is maintained in the proposed extension. The paper describes the new algorithm, argues its theoretical properties and evaluates it against PRM* and the original SPARS algorithm. The experimental results show that the memory requirements of the method upon construction are dramatically reduced, while returning competitive quality paths with PRM*. There is a small sacrifice in the size of the final spanner relative to SPARS but the new method still returns graphs orders of magnitudes smaller than PRM*, leading to very efficient online query resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信